直方图
内存限制: 256 Mb时间限制: 1000 ms
题目描述
直方图由 n 列小方格合并而成。每列有若干方格,其中第 i 列方格的数量为 hi。请在方格图的轮廓中找到一个最大面积的矩形,输出这个矩形的面积与最大矩形的数量。
例如在上图中 n=5,h=(3,2,2,1,2),最大面积为 3×2=6,只有 1 个。
输入格式
- 第一行:单个整数 n
- 第二行:n 个整数 h1,h2,…,hn
输出格式
- 第一行:最大矩形的面积
- 第二行:最大矩形的数量
数据范围
- 30% 的数据,1≤n≤100
- 60% 的数据,1≤n≤20,000
- 100% 的数据,1≤n≤300,000
- 0≤hi≤500,000
样例数据
输入:
5
3 2 2 1 2
输出:
6
1
解析:
本题使用单调栈保存前边出现的高点,对于高于当前点的,出栈,并计算该高度的最大面积,次栈顶到当前点的高度乘以栈顶高度。
找出所有面积的最大值,和最大值出现的次数。
详见代码
#include <bits/stdc++.h>
using namespace std;
int n;
long long h[300005];
long long ans=0;//最大面积
int cnt=0;//记录最大面积数量
struct node{
int w;//位置
int h;//高度
};
stack <node> s;//单调栈
int main() {
cin>>n;
for (int i=1;i<=n;i++){
cin>>h[i];
}
node tmp;
tmp.h=0;
tmp.w=0;
s.push(tmp);//起点为0,0
for (int i=1;i<=n+1;i++){//依次入栈计算(增加了n-1个点,高度为0,确保全部出栈)
while (!s.empty()&&h[i]<=s.top().h){//当前高度小于栈顶,则计算栈顶高度的最大面积
int hh=s.top().h;
s.pop();
if (s.empty()) continue;
long long area=hh*(i-s.top().w-1);//计算面积
if (area>ans){//求最大值
ans=area;
cnt=1;
} else if(area==ans){//相等则增加数量
cnt++;
}
}
tmp.w=i;
tmp.h=h[i];
s.push(tmp);//当前高度入栈
}
cout<<ans<<endl<<cnt;//输出结果
return 0;
}