如何判断训练中的模型已经收敛

可以通过查看训练集和测试集的loss变化来判断。

一、loss的变化情况分为以下几种情况:

1.train loss 下降,val loss下降: 表明网络还在学习

2. train loss下降,val loss稳定:网络过拟合

3.train loss稳定,val loss下降:数据集有问题

4.train loss稳定,val loss稳定:可能已经收敛,或者学习遇到瓶颈,可以调小学习率试试

5.train loss上升,val loss上升:网络结构设计有问题,或者训练参数设置不当等,及时停止学习,调整代码

二、根据训练曲线判断是否收敛

1.欠拟合:欠拟合一般有两种典型表现

①loss曲线趋于水平或维持相对较高的loss值

在这里插入图片描述

②训练结束时,train loss依然持续减少,且val loss 有较大波动

在这里插入图片描述

2.过拟合:过拟合指的是模型对训练集学习的太好,导致网络泛化能力差,在验证集上反而效果不好。

在这里插入图片描述

 3.模型收敛:train loss 下降趋于稳定,val loss 下降也趋于稳定,且train loss 的值与val loss 的值相差不大 

 参考:机器学习如何判断模型训练是否充分_怎么看模型是否收敛_supermapsupport的博客-CSDN博客https://blog.csdn.net/supermapsupport/article/details/123912542?utm_medium=distribute.pc_relevant.none-task-blog-2~default~baidujs_baidulandingword~default-1-123912542-blog-122102672.pc_relevant_landingrelevant&spm=1001.2101.3001.4242.2&utm_relevant_index=4

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值