机器学习
文章平均质量分 78
CAFFE009
这个作者很懒,什么都没留下…
展开
-
分类预估评价函数 ——classification_report
classification_report用来分析不同类别的准确率,召回率,F1值等,从而便于按照类别查看准确率、召回率。一.首先介绍下精确率和召回率精确率是针对我们预测结果而言的,它表示的是预测为正的样本中有多少是真正的正样本。那么预测为正就有两种可能了一种就是把正类预测为正类(TP),另一种就是把负类预测为正类(FP)。而召回率是针对我们原来的样本而言的,它表示的是样本中的正例有多少被预测正确...原创 2018-06-05 22:45:53 · 9129 阅读 · 0 评论 -
奇异值分解(SVD)原理与在降维中的应用
转自:https://www.cnblogs.com/pinard/p/6251584.html 奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域。是很多机器学习算法的基石。本文就对SVD的原理做一个总结,并讨论在在PCA降维算法中是如何运用运...转载 2018-07-20 19:00:43 · 564 阅读 · 0 评论 -
机器学习中,有哪些特征选择的工程方法
转:https://blog.csdn.net/u012556077/article/details/51779865转载 2018-11-07 22:41:51 · 156 阅读 · 0 评论 -
PCA为什么用协方差矩阵 而SVD不用
PCA方法是数据降维的重要手段之一,方法比较简单,就是将样本数据求一个维度的协方差矩阵,然后求解这个协方差矩阵的特征值和对应的特征向量,将这些特征向量按照对应的特征值从大到小排列,组成新的矩阵,被称为特征向量矩阵,也可以称为投影矩阵,然后用改投影矩阵将样本数据转换。取前K维数据即可,实现对数据的降维。 假设样本数据有r维(组成一个r维向量),共有n个样本。组成r*n矩阵A,矩阵每一...翻译 2018-12-06 22:34:41 · 1596 阅读 · 0 评论 -
(转)Python: sklearn库中数据预处理函数fit_transform()和transform()的区别
《Python机器学习及实践》上的code的时候,对于数据预处理中涉及到的fit_transform()函数和transform()函数之间的区别很模糊,查阅了很多资料,这里整理一下涉及到这两个函数的代码如下:[python] view plain copy# 从sklearn.preprocessing导入StandardScaler from sklearn.preprocessing im...转载 2018-06-10 20:47:19 · 1452 阅读 · 0 评论 -
牛客网专项练习-机器学习
1.输入图片大小为200×200,依次经过一层卷积(kernel size 5×5,padding 1,stride 2),pooling(kernel size 3×3,padding 0,stride 1),又一层卷积(kernel size 3×3,padding 1,stride 1)之后,输出特征图大小为:97解答:根据公式:输出尺寸=(输入尺寸-filter尺寸+2*paddi...原创 2018-07-19 11:11:36 · 1064 阅读 · 0 评论 -
牛客网-机器学习知识点考点
1.在HMM中,如果已知观察序列和产生观察序列的状态序列,那么可用以下哪种方法直接进行参数估计()正确答案: D A.EM算法B.维特比算法C.前向后向算法D.极大似然估计解答: EM算法: 只有观测序列,无状态序列时来学习模型参数,即Baum-Welch算法即参数估计,是一种无监督的训练方法维特比算法: 用动态规划解决HMM的预测问题,不是参数估...原创 2018-07-19 12:53:37 · 1980 阅读 · 0 评论 -
机器学习常用算法优点及缺点总结
决策树一、 决策树优点1、决策树易于理解和解释,可以可视化分析,容易提取出规则。2、可以同时处理标称型和数值型数据。3、测试数据集时,运行速度比较快。4、决策树可以很好的扩展到大型数据库中,同时它的大小独立于数据库大小。二、决策树缺点1、对缺失数据处理比较困难。2、容易出现过拟合问题。3、忽略数据集中属性的相互关联。4、ID3算法计算信息增益时结果偏向数值...转载 2018-07-20 13:22:46 · 643 阅读 · 0 评论 -
机器学习-数据挖掘中常用的数据清洗方法
转自:https://blog.csdn.net/jiazericky/article/details/80322225在数据挖掘过程中,数据清洗主要根据探索性分析后得到的一些结论入手,然后主要对四类异常数据进行处理;分别是缺失值(missing value),异常值(离群点),去重处理(Duplicate Data)以及噪音数据的处理。 1. 探索性分析探索性分析部分,对于整个数...转载 2018-12-06 22:36:19 · 1655 阅读 · 0 评论