classification_report用来分析不同类别的准确率,召回率,F1值等,从而便于按照类别查看准确率、召回率。
一.首先介绍下精确率和召回率
精确率是针对我们预测结果而言的,它表示的是预测为正的样本中有多少是真正的正样本。那么预测为正就有两种可能了一种就是把正类预测为正类(TP),另一种就是把负类预测为正类(FP)。
而召回率是针对我们原来的样本而言的,它表示的是样本中的正例有多少被预测正确了。那也有两种可能,一种是把原来的正类预测成正类(TP),另一种就是把原来的正类预测为负类(FN)。
TP: 正类预测 正类标签
FP:正类预测 负类标签
TN: 负类预测 负类标签
FN:负类预测 正类标签
二.评价函数
准确率/精度(precision) = 正确预测的个数/被预测正确的个数即:TP/(TP+FP)
召回率(recall)=正确预测的个数/预测个数即:TP/(TP + FN)
F1-score= 2*精度*召回率/(精度+召回率)
示例
from sklearn.metrics import classification_r