分类预估评价函数 ——classification_report

classification_report是用于评估分类模型的工具,它提供了每个类别的精确率、召回率和F1分数。精确率衡量预测为正类的样本中有多少是真正正类,召回率则关注正类样本中有多少被正确预测。F1分数是精确率和召回率的调和平均数。示例展示了如何使用classification_report,并解释了其输出结果的计算过程。
摘要由CSDN通过智能技术生成

classification_report用来分析不同类别的准确率,召回率,F1值等,从而便于按照类别查看准确率、召回率。

一.首先介绍下精确率和召回率

精确率是针对我们预测结果而言的,它表示的是预测为正的样本中有多少是真正的正样本。那么预测为正就有两种可能了一种就是把正类预测为正类(TP),另一种就是把负类预测为正类(FP)。

召回率是针对我们原来的样本而言的,它表示的是样本中的正例有多少被预测正确了。那也有两种可能,一种是把原来的正类预测成正类(TP),另一种就是把原来的正类预测为负类(FN)。

TP: 正类预测  正类标签

FP:正类预测  负类标签

TN: 负类预测  负类标签

FN:负类预测  正类标签


二.评价函数

准确率/精度(precision) = 正确预测的个数/被预测正确的个数即:TP/(TP+FP)

召回率(recall)=正确预测的个数/预测个数即:TP/(TP + FN)

F1-score= 2*精度*召回率/(精度+召回率)


示例

from sklearn.metrics import classification_r

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值