列维-林德伯格中心极限定理(独立同分布的中心极限定理)
设 随 机 变 量 序 列 , X 1 , X 2 ⋅ ⋅ ⋅ 独 立 同 分 布 , 且 有 期 望 和 方 差 E ( X k ) = μ , D ( X k ) = σ 2 , k = 1 , 2 ⋅ ⋅ ⋅ 则 对 于 任 意 实 数 x , l i m P ( ∑ k = 1 n X k − n μ n μ ≤ x ) = 1 2 Π ∫ − ∞ x e t 2 2 d t 设随机变量序列,X_1,X_2···独立同分布,且有期望和方差\\ E(X_k)=\mu, D(X_k)=\sigma^2, k=1,2···\\ 则对于任意实数x,\\ limP({\frac{\sum_{k=1}^nX_k-n\mu}{\sqrt{n\mu}}}\leq x)=\frac{1}{\sqrt{2\Pi}}\int_{-\infty}^x e^\frac{t^2}{2}dt 设随机变量序列,X1,X2⋅⋅⋅独立同分布,且有期望和方差E(Xk)=μ,D(Xk)=σ2,k=1,2⋅⋅⋅则对于任意实数x,limP(nμ∑k=1nXk−nμ≤x)=2Π1∫−∞xe2t2dt
简化上述的式子
记 Y n = ∑ k = 1 n X k − n μ n μ l i m P ( Y n ≤ x ) = Θ ( x ) 即 n 足 够 大 时 , Y n 的 分 布 函 数 近 似 于 标 准 正 太 的 分 布 函 数 。 记Yn = \frac{ \sum_{k=1}^n X_k -n\mu }{\sqrt {n}\mu}\\ limP(Y_n\le x) = \Theta(x)\\ 即n足够大时,Y_n的分布函数近似于标准正太的分布函数。 记Yn=nμ∑k=1nXk−nμlimP(Yn≤x)=Θ(x)即n足够大时,Yn的分布函数近似于标准正太的分布函数。
Y n ∼ N ( 0 , 1 ) , Y N 近 似 标 准 正 态 分 布 可 以 推 出 ∑ X k 近 似 服 从 N ( n μ , n σ 2 ) , x ˉ = 1 n ∑ k = 1 n X k 近 似 服 从 N ( μ , σ 2 n ) 表 明 当 n 充 分 大 时 , n 个 具 有 期 望 和 方 差 的 独 立 同 分 布 的 随 机 变 量 之 和 或 者 平 均 值 近 似 服 从 正 态 分 布 Y_n \sim N(0,1), Y_N近似标准正态分布\\ 可以推出 \sum X_k 近似服从N(n\mu,n\sigma^2),\bar {x}=\frac{1}{n}\sum_{k=1}^n X_k近似服从N(\mu,\frac{\sigma^2}{n}) \\ 表明当n充分大时,n个具有期望和方差的独立同分布的随机变量之和\\或者平均值近似服从正态分布 Yn∼N(0,1),YN近似标准正态分布可以推出∑Xk近似服从N(nμ,nσ2),xˉ=n1k=1∑nXk近似服从N(μ,nσ2)表明当n充分大时,n个具有期望和方差的独立同分布的随机变量之和或者平均值近似服从正态分布
例题:
设有50个寻呼台,每个寻呼台收到的呼叫次数服从P(0.05)泊松分布,求收到的呼叫次数总和大于3次的概率。
解:
X i ∼ P ( 0.05 ) = > E X i = D X i = 0.05 由 中 心 极 限 定 理 得 ∑ i = 1 50 X i ∼ N ( 2.5 , 2.5 ) 正 态 分 布 P ( ∑ i = 1 50 X i > 3 ) = 1 − P ( ∑ i = 1 50 X i < 3 ) ≈ 1 − Θ ( 3 − 2.5 2.5 ) ≈ 0.375 X_i \sim P(0.05) => EX_i = DX_i = 0.05\\ 由中心极限定理得\sum_{i=1}^{50}X_i \sim N(2.5,2.5)正态分布 \\ P(\sum_{i=1}^{50}X_i>3)= 1 - P(\sum_{i=1}^{50}X_i<3) \approx1-\Theta(\frac{3-2.5}{\sqrt{2.5}})\approx 0.375 Xi∼P(0.05)=>EXi=DXi=0.05由中心极限定理得i=1∑50Xi∼N(2.5,2.5)正态分布P(i=1∑50Xi>3)=1−P(i=1∑50Xi<3)≈1−Θ(2.53−2.5)≈0.375
例题
设 某 种 汽 车 的 碳 排 放 量 平 均 值 为 0.9 g / K M , 标 准 差 为 1.9 g / k m , 某 出 租 车 公 司 有 这 种 车 100 辆 , 以 x ˉ 表 示 这 些 车 辆 的 碳 排 放 量 的 算 数 平 均 值 , 问 当 L ˉ 为 何 值 是 , x ˉ 大 于 L ˉ 的 概 率 不 超 过 0.01 ? 设某种汽车的碳排放量平均值为0.9g/KM,标准差为1.9g/km,\\某出租车公司有这种车100辆,以\bar x表示这些车辆的碳排放量的\\算数平均值,问当\bar L为何值是,\bar x大于\bar L的概率不超过0.01? 设某种汽车的碳排放量平均值为0.9g/KM,标准差为1.9g/km,某出租车公司有这种车100辆,以xˉ表示这些车辆的碳排放量的算数平均值,问当Lˉ为何值是,xˉ大于Lˉ的概率不超过0.01?
解
设 X i 表 示 第 i 辆 车 的 碳 排 放 量 , 则 E X i = 0.9 , D X i = 1. 9 2 由 中 心 极 限 定 理 得 x ˉ = 1 n ∑ k = 1 n X k ∼ N ( μ , σ 2 n ) = N ( 0.9 , 1. 9 2 100 ) P ( x ˉ > L ) ≤ 0.01 1 − p ( x ˉ ≤ L ) ≈ 1 − θ ( L − 0.9 0.19 ) L = 1.3427 设X_i表示第i辆车的碳排放量,则EX_i = 0.9,DX_i=1.9^2\\ 由中心极限定理得\bar x = \frac{1}{n}\sum _{k=1}^{n}X_k \sim N(\mu,\frac{\sigma^2}{n})=N(0.9,\frac{1.9^2}{100})\\ P(\bar x>L) \leq0.01 \\ 1-p(\bar x\leq L)\approx1- \theta(\frac{L-0.9}{0.19})\\ L=1.3427 设Xi表示第i辆车的碳排放量,则EXi=0.9,DXi=1.92由中心极限定理得xˉ=n1k=1∑nXk∼N(μ,nσ2)=N(0.9,1001.92)P(xˉ>L)≤0.011−p(xˉ≤L)≈1−θ(0.19L−0.9)L=1.3427
拉普拉斯中心极限定理(二项分布以正太分布为极限分布)
设 Y n ∼ B ( n , p ) , 0 < p < 1 , n = 1 , 2 ⋅ ⋅ ⋅ 则 对 任 一 实 数 x , 有 lim n → ∞ P ( Y n − n p n p ( 1 − p ) ≤ x ) = 1 2 π ∫ − ∞ x e − t 2 2 d t = θ ( x ) 即 n 足 够 大 时 , Y n ∼ N ( n p , n p ( 1 − p ) ) ( 近 似 ) 设Y_n \sim B(n,p),0<p<1,n=1,2···则对任一实数x,有\\ \lim_{n \to \infty}P(\frac{Y_n-np}{\sqrt{np(1-p)}}\leq x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{x}e^{-\frac{t^2}{2}}dt=\theta(x)\\ 即n足够大时,Y_n\sim N(np,np(1-p))(近似) 设Yn∼B(n,p),0<p<1,n=1,2⋅⋅⋅则对任一实数x,有n→∞limP(np(1−p)Yn−np≤x)=2π1∫−∞xe−2t2dt=θ(x)即n足够大时,Yn∼N(np,np(1−p))(近似)
例题
设 某 单 位 有 200 台 电 话 机 , 每 台 电 话 机 使 用 外 线 的 概 率 为 0.2 , 假 定 每 台 分 级 是 相 互 独 立 的 , 问 要 安 装 多 少 条 外 线 , 才 能 以 95 % 以 上 的 概 率 保 证 分 机 用 外 线 时 不 等 待 ? 设某单位有200台电话机,每台电话机使用外线的概率为0.2,\\假定每台分级是相互独立的,问要安装多少条外线,才能以\\95\% 以上的概率保证分机用外线时不等待? 设某单位有200台电话机,每台电话机使用外线的概率为0.2,假定每台分级是相互独立的,问要安装多少条外线,才能以95%以上的概率保证分机用外线时不等待?
解
一般np超过5就不适用泊松分布了
设
有
X
部
分
机
同
时
使
用
外
线
,
则
有
X
∼
B
(
200
,
0.2
)
,
其
中
n
=
200
,
p
=
0.2
,
n
p
=
200
,
n
p
(
1
−
9
)
=
32
设
有
n
条
外
线
。
由
题
意
有
P
(
x
≤
N
)
≥
0.95
由
拉
普
拉
斯
中
心
极
限
定
理
有
P
(
x
≤
N
)
≈
θ
(
N
−
n
p
n
p
(
1
−
p
)
)
=
θ
(
N
−
40
32
)
查
表
得
。
θ
(
1.65
)
=
0.95
N
≥
50
设有X部分机同时使用外线,则有X\sim B(200,0.2),\\ 其中n=200,p=0.2,np=200,np(1-9)=32\\ 设有n条外线。由题意有P(x\leq N) \ge 0.95\\ 由拉普拉斯中心极限定理有\\ P(x\leq N) \approx \theta(\frac{N-np}{\sqrt{np(1-p)}})=\theta(\frac{N-40}{\sqrt{32}})查表得。\\ \theta(1.65) = 0.95\\ N \ge 50
设有X部分机同时使用外线,则有X∼B(200,0.2),其中n=200,p=0.2,np=200,np(1−9)=32设有n条外线。由题意有P(x≤N)≥0.95由拉普拉斯中心极限定理有P(x≤N)≈θ(np(1−p)N−np)=θ(32N−40)查表得。θ(1.65)=0.95N≥50