一文搞懂大模型的分词器(Tokenizer)

今天来聊一聊BERT和GPT的分词器,了解大模型的第一步:Tokenizer。

Tokenizer(分词器)是大语言模型(如BERT和GPT)预处理文本的核心组件,其作用是将原始文本拆解为子词、单词或字符,同时保留语义和结构信息。

BERT vs GPT

技术交流

在这里插入图片描述

一、BERT(WordPiece)

BERT的Tokenizer:基于WordPiece的子词分词

BERT — PaddleEdu documentation

一、分词工作原理:

BERT使用WordPiece算法生成子词(subword)单元,通过贪心算法迭代合并语料中高频出现的字符对,平衡词汇表大小与OOV(未登录词)问题。

BERT将特殊标记预置在输入序列中,通过结构化标记引导模型理解任务目标与上下文边界。

[CLS]:表示序列的起始位置,常用于分类任务。

[SEP]:分隔不同句子或段落。

例如,Input ‘my dog is cute. he likes playing’ 分词为:

‘[CLS]’、‘my’、‘dog’、‘is’、‘cute’、‘[SEP]’、‘he’、‘likes’、‘play’、‘##ing’(“##”表示子词延续)和’[SEP]'。

二、专业术语:

忽略:WordPiece算法、贪心算法、OOV问题。

关注:Token(词元)、Tokenizer(分词)、Subword(子词)、Tag(标记)

图片

三、存在问题:

(1)中文适配性差

BERT 原始 Tokenizer 依赖空格分词(如英文),对中文等无显式空格的语言需额外分词预处理。

(2)难以适应动态任务

[CLS]、[SEP] 等特殊标记的语义和位置固定,难以适应动态任务需求(如可变长度的分类任务、多轮对话)。

图片

__二、GPT(BPE)
__

GPT的Tokenizer:基于BPE的子词分词

Byte Pair Encoding: building the GPT tokenizer with Karpathy -

GPT(尤其是GPT-2/3)使用BPE算法,通过合并高频字节对生成子词,与WordPiece不同,BPE更注重频率统计。同时GPT-2采用字节级BPE,支持多语言输入(如中文、代码)而无需额外预处理。

图片

二、专业术语:

忽略:BPE算法、频率统计、字节级BPE。

关注:Token(词元)、Tokenizer(分词)、Subword(子词)

Byte Pair Encoding: building the GPT tokenizer with Karpathy -

三、BPE和WordPiece两者差异:

(1)符号标记

BPE:无特殊标记,直接合并高频子词(如happy)。

WordPiece:依赖##标记后缀(如##ness),拆分规则更严格。

(2)跨语言能力(中英文)

BPE:通过字节级编码统一处理多语言(如pneu+monia)。

WordPiece:需预分词(如中文按字拆分),跨语言泛化性弱。

(3)适用场景

BPE:生成任务(GPT)、多语言混合、非规范文本WordPiece。

WordPiece:理解任务(BERT)、短文本分类、精准语义解析。

Training BPE, WordPiece, and Unigram Tokenizers from Scratch using Hugging  Face | by Harshit Tyagi | TDS Archive | Medium

### Transformers框架的原理 Transformers框架的核心基于Transformer架构,这是一种由Vaswani等人于2017年提出的神经网络模型[^4]。该架构主要分为两个部分:Encoder(编码器)和Decoder(解码器)。然而,在实际应用中,某些变体可能仅使用其中一个部分。 #### 输入表示 对于像BERT这样的模型,其输入是由三种嵌入向量相加构成的:Token Embeddings、Positional Embeddings以及Segment Embeddings[^1]。这种组合允许模型不仅学习单词的意义及其位置关系,还能区分不同句子片段间的差异。 #### 架构组成 - **自注意力层**:这是Transformer的关键创新之一,它让模型可以关注到输入序列的不同部分,从而捕捉更丰富的语义信息[^3]。 - **前馈神经网络**:应用于每一个位置上的独立转换操作,增加了表达能力。 - **归一化与残差连接**:通过加入这些技术来改善深层结构的学习效果并防止梯度消失问题的发生[^3]。 ### 使用教程 要开始使用Transformers库来进行自然语言处理任务,可以从安装Hugging Face提供的`transformers`包入手: ```bash pip install transformers ``` 加载预训练好的模型非常简便,比如下面是如何加载BERT用于分词的例子: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = TFBertModel.from_pretrained("bert-base-uncased") inputs = tokenizer("Hello world!", return_tensors="tf") outputs = model(inputs) print(outputs.last_hidden_state) ``` 这段代码展示了如何初始化一个BERT tokenizer 和对应的TF (TensorFlow) 版本的 BERT 模型,并对一句话进行了编码得到隐藏状态作为输出。 ### 实战案例 - 计算词语相似度 如果想探索词汇间的关系,则可以通过Word Embedding实现这一点。这里给出一段简单的Python脚本来展示这一过程[^5]: ```python from gensim.models import KeyedVectors # 加载Google News pre-trained vectors word_vectors = KeyedVectors.load_word2vec_format('./GoogleNews-vectors-negative300.bin', binary=True) similar_words = word_vectors.most_similar('king', topn=5) for w,score in similar_words: print(f"{w}: {score}") ``` 此示例说明了如何利用预先训练好的谷歌新闻数据集中的词向量找到最接近给定单词的概念。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值