题目
leetcode链接
给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。
计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。
你可以认为每种硬币的数量是无限的。
示例 1:
输入:coins = [1, 2, 5], amount = 11
输出:3
解释:11 = 5 + 5 + 1
示例 2:
输入:coins = [2], amount = 3
输出:-1
示例 3:
输入:coins = [1], amount = 0
输出:0
示例 4:
输入:coins = [1], amount = 1
输出:1
示例 5:
输入:coins = [1], amount = 2
输出:2
看过一次背包问题的讲解,这次遇到了但是想不起来,使用回溯,即使剪枝,也超时了。
看了答案的动态转移方程,然后自己写了下:时间35% 内存21%
/*
coins.size()个物品,背包容量amount
物品可以重复用,完全背包问题
dp[i]=min{dp[i-coins[0]],dp[i-coins[1]],dp[i-coins[2]]......dp[i-coins[j]]}+1
i表示组成金额i时需要的最少硬币数量
*/
class Solution {
public:
int coinChange(vector<int>& coins, int amount) {
vector<int> dp(amount+1);
for(int i=0;i<dp.size();i++){
dp[i]=0;
}
for(int i=1;i<=amount;i++){
int min_coin=999;
for(int j=0;j<coins.size();j++){
if(i-coins[j]>=0){
if(dp[i-coins[j]]<min_coin){
min_coin=dp[i-coins[j]];
}
}
}
dp[i]=min_coin+1;
}
if(dp[amount]==1000){
return -1;
}
return dp[amount];
}
};
回溯超时的写法([1,2,5] [100])
class Solution {
public:
vector<vector<int>> res;
vector<int> path;
int coinChange(vector<int>& coins, int amount) {
back_tracking(coins,amount);
if(res.size()==0){
return -1;
}
int min_len=999;
for(int i=0;i<res.size();i++){
if(min_len>res[i].size()){
min_len=res[i].size();
}
}
return min_len;
}
void back_tracking(vector<int> coins,int amount){
if(amount==0){
res.push_back(path);
}
if(amount<0){
return ;
}
for(int i=0;i<coins.size();i++){
path.push_back(coins[i]);
back_tracking(coins,amount-coins[i]);
path.pop_back();
}
}
};