GYM 101498D Counting Paths(逆元求组合数)

GYM 101498D Counting Paths(逆元求组合数)

题意

  在一棵完全无限延伸的二叉树上,从顶点开始,给出路径的长度a和拐弯的次数b,问最多可以走多少种路径。

解题思路

  因为路径的长度a和拐弯的次数b已经知道了,所以我们不难发现,无论怎么走,路径上总有a+1个点,除去起点和终点不能拐弯,剩下的a-1个点都可以拐弯,那么我们就可以发现,路径的数量就是个组合数。又因为第一步起步不能拐弯,而且有两个方向可以走,则结果为2×C(b,a-1)。我们再来看,题目给的数据范围,0 ≤ b < a ≤ 10^5,略有点大,直接用唯一分解定理会超时,用O(n^2)的递推预处理也会超时,所以只能用逆元求解。

  求组合数的公式为 C(n,m)=n!/(m!*(n-m)!)(m≤n)

  我们可以预处理一下,用fac[]数组保存下每个fac[i]对应的((i!)%mod),然后用v[]数组保存下每个v[i]对应的fac[i]的逆元。这样组合数公式就可以化为C(m,n) = ( fac[n] * v[n] % modn ) * v[n-m] ) % modn。 算算时间复杂度,根据费马小定理求逆元的时间为O(logn),求出所有的逆元的时间就为O(nlongn),这题的时间复杂度就是O(nlongn)。

为什么要用逆元?

  如果直接是递推预处理的话会超时,而有的人可能会问,为什么不直接用C(m,n) = (fac[n]/(fac[m] * fac[n-m]))%modn求解?因为fac[m] * fac[n-m]太大,可能会爆精度。这个时候就需要逆元来解决这个问题了,由于这个题的mod是质数,所以我们直接可以用费马小定理来求逆元。关于逆元讲解https://blog.csdn.net/baidu_35643793/article/details/75268911这个大佬的博客讲的很清楚。

代码

#include<bits/stdc++.h>
using namespace std;
const int modn = 1e9+7;
const int maxn = 1e5+5;

long long fac[maxn],v[maxn];

long long quickpow(long long a, long long b)//快速幂取模
{
    if (b < 0) return 0;
    long long ret = 1;
    a %= modn;
    while(b)
    {
        if (b & 1) ret = (ret * a) % modn;
        b >>= 1;
        a = (a * a) % modn;
    }
    return ret;
}
long long inv(long long a)
{
    return quickpow(a, modn - 2);
}
void init()
{
    fac[0]=v[0]=1;
    for(int i=1; i<maxn; i++)
    {
        fac[i]=(fac[i-1]*i)%modn;
        v[i]=inv(fac[i]);
    }
}
int main()
{
    ios::sync_with_stdio(false);
    init();
    int t;
    cin>>t;
    while(t--)
    {
        int n,m;
        cin>>n>>m;
        cout<<(2*(fac[n-1]*v[n-1-m]%modn)*v[m])%modn<<endl;
    }
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值