隐函数求导方法:
方法一:
将y看成关于x的函数,即 (1/y)'=y'/2y
方法二:
eg: xy + lnx + lny = 0; 令F(x,y) = xy + lnx+ lny
隐函数存在定理1: dy /dx = - Fx/Fy,
其条件:1.具有连续偏导数; 2.F(x0,y0) =0,即存在零点; 3.Fy(x0,y0)=/=0,即隐函数的偏导不为零
二元隐函数微分法:
隐函数存在定理2:
,
注意,求偏导时,相互独立,互不影响。
解方程组时,可以运用行列式求解。
雅可比行列式(隐函数存在定理3):
假设有: F=f(u,v), u= f(x,y) , v = f(x,y) 以及 G = f(u,v), u = f(x,y) ,v = f(x,y)
雅可比行列式(系数行列式): ,记作 J =
则有: ,
,注意,它们不是对称关系!!!
方向导数:
前提: 1.可微 ; 2.二元函数及以上;
记法:
计算法则:
推广:(三元)
其中,cosα,cosβ,cosγ 称为: 方向余弦; cosα = x/ ||
eg: 求 u = x^2*y*z 在点p(1,1,1) 沿方向(2,-1,3) 的方向导数
梯度:
grad f(x,y) = (fx,fy)向量;
方向导数是一个数,梯度,是一个向量;
方向导数 = 梯度 与 方向L的单位向量 的数量积;
= 梯度 的模长 * 1 * cos <梯度,方向L>
多元函数的极值及求法:
多元函数的极值的必要条件:
fx(x0,y0)=0, fy(x0,y0) =0,即 有驻点
注意: 极值点 --->驻点 驻点 --/->极值点
多元函数有极值的充分条件:
函数具有一阶以及二阶 连续偏导,令fxx(x0,y0) = A ,fyy(x0,y0)=C,令 fxy(x0,y0) = B
1.当 AC-B^2 >0时,有极值,若 A<0,为极大值,若A>0,为极小值
2.当AC-B^2 < 0时,无极值;
3.当AC-B^2 = 0时,可能有极值,也可能没有极值;(注意,若二阶偏导含有xy,将驻点值代入即可)
极值点可能是驻点,也可能是不可导点(常见的比如: 分母为零等限制);
最值可能在极值点,也可能在定义域边界上存在。
二元函数的最值同理; 要么将驻点值代入比对; 要么将定义域边界代入比对;
条件极值:
拉格朗日乘数法:
1.构造一个新函数 L(x,y) = f(x,y) + λφ(x,y), 其中,λ称为拉格朗日乘子; φ(x,y)称为条件函数; f(x,y)称为目标函数
2.求驻点;
3.构造方程组: 各自的偏导=0,以及 φ(x)=0;
eg: u = xyz, φ(x)=1/x+ 1/y + 1/z - 1/a;
构造方程组: ,
思路: 对程序; ---> 求 xyz----> 回代 ---> 求x,y,z;
二重积分:
物理意义:
曲顶柱体的体积: V = ,其中, λ=1/n
记作:
其中, D叫做积分区域;
dσ叫做 面积元素;
f(x,y)叫做 被积函数;
x,y叫做 积分变量;
性质:
1.线性性: 即 满足数乘分配律;
2.积分区域的可加性
3.若 f(x,y) = 1 , 则
4.保不等式性: 若 f(x,y) <= g(x,y) ,则有:
另:
5.积分估值: 若 f 在区域D中,有m<= f(x,y) <= M, 则有:
6.二重积分中值定理:
注:定积分的中值定理:
二重积分的计算:
1.利用直交坐标计算D的面积: 分为x型面积; y型面积;
其中,x型面积:
y型面积:
x型面积时,y的上下界只能用线段表示,而不能用点表示;
同理,y型面积时,x的上下界只能用线段方程表示,而不能用点 表示;
通常在计算时,可以将xy分开,因为针对特定的积分变量,其余变量都视作常数。
eg:
在选取x型与 y 型区域时候,利用好技巧则会简化很多:
eg: , D是直线y=x,y=0,x=π,所围成的闭区域; (看成什么型,就对什么后积分)
若先对y积分,再对x积分就很简单; (这是一个偶然性,但是从出题者角度来说则是必然性。)
若先对x积分,再对y积分就很复杂;
交换积分顺序的技巧:
1.画出积分区域D;
2.将要转换的顺序按照 直角坐标系 法则进行转换
eg: I =
2.利用极坐标系计算二重积分:
公式:
注意,在极坐标系中,只有θ型区域;
当,f(r*cosθ, r*sinθ) = 1时,有:
eg: 计算:
注意,直交坐标系与 极坐标系的转化 需要靠 D的区域作为桥梁;一般情况下,圆形等特殊图形才可进行转化;
鉴于θ极坐标系中,只有θ型,而此时 ,r 的范围: 注意,本质上仍是用关于θ的表达式表示,但是大多数情况下其表现出来的则是两个单独的点。 (这是由于圆锥曲线的特殊性等决定的。)
3.二重积分换元法(用于辅助):
其中: J(u,v) 为雅可比行列式: J(u,v) = ,此时x,y充当的中间函数,u,v充当的最终变量
前提: 1.x(u,v),y(u,v) 在D' 上具有一阶 连续偏导数
2.J(u,v) =/=0
3.变换 D' -> D 是 一对一的;
计算原则与步骤:
1.画出积分域;
2.选择坐标系;
3.确定积分序;
4.写出积分限(根据图示法, 或者 不等式)
5.计算要简便(充分利用对称性,充分利用图形(即选取坐标系,选取区域形状方面))
2019.3.11 记录
对重积分的理解:
1.二重积分与积分的联系?
特别地,当二重积分的 被积函数 为 1时,二重积分代表的值 代表底面积:
相应的,一重定积分 被积函数 为 1时,代表 底部长度。
2.二重积分 先后积分 对结果无影响的原因?
先后积分,是对底面积的不同呈现形式; 底面积没变,高也没变。
3.二重积分的积分域 与 被积函数 的关系?
没有半毛钱关系! 即:
4.什么情况下,二重积分可独立积分?
当 先积分的上下限 中,不含 后积分上下限 的微分变量时,可独立积分!
2019.3.15 补充:
三重积分:
1. 形式定义:
,其中,dv = dxdydz 称为: 体积元素;
2.几何物理意义:
如果 f(x,y,z) 表示 某物体在 点 (x,y,z)的密度,Ω 是该物体所占有的空间闭区域,f(x,y,z)在Ω 上连续, 则三重积分是该物体 质量 的近似值。
3.三重积分的计算:
1.利用直角坐标系计算;
基本思想: 利用体积在某一个维度 的 投影,化为二次积分; 先将 f(x,y,z) 看成 z 的函数积分; 再对积分结果求二次积分;
2019.3.21补充: 也可先求二次积分,再对结果求积分:
如:
2.利用柱面坐标计算三重积分;
基本思想: 跟 极坐标差不多。 柱面 在 平面的投影,成为 极坐标。
,其中,根据柱面的变化范围,可确定
的范围。
3.利用球面坐标计算:
φ 表示 r 在z维 的偏转角度; θ 表示 r在 xOy平面的 投影 与 x维 的偏转;
有:
, 注意,根据点的移动轨迹,可以确定 r,φ,θ的变化范围。
2019.3.21修正: 上式子中, y = r sin φ sin θ
z = r cos φ
2019.3.21上述公式修正: