多元函数微分中的偏导、导数的一些问题

本文从人文社科的角度解释了偏导数与d的区别,通过流动性陷阱的例子说明了偏导数在传导途径中的作用。讨论了考研中偏导数与全导数的不同表达形式,包括链式求导法则和隐函数存在定理,并给出了相关题目解析,强调了在实际应用和考试中的注意事项。
摘要由CSDN通过智能技术生成

首先是区分一下偏导数 ∂ \partial d d d(这里不能说全导数,全导数是一元函数中的,多元函数中没有全导数这种东西):
这里我不从定义上来纠结,作为一名人文社科专业的学生,我们就从控制金融变量(也就是我们函数中的自变量x、y),最后达到目标变量(就是函数的最终取值)的传导途径来看。
一个比较典型的例子是流动性陷阱,一般来说我们都知道降低利率会刺激经济的增长,这个很好理解的,就比如你存钱的基本上不给利息了,贷款的时候可能银行还倒贴你利息(这个比较罕见,一般就是比0高的不多了)。
在这里降低利率是我们的控制变量x、y,而经济增长是我们最终的目的,也就是函数的值。但是我们发现当利率降低到一定程度后,人们反而不愿意消费、投资了,钱都被人们雪藏起来了,这就是因为低利率影响了人们的流动性偏好,这个时候人们认为持有现金是最好的选择(有兴趣的同学可以去翻金融学相关的文章),进一步的,这个时候经济增长的目的也就达不到了。

由此我们可以看到一个如下的传导途径:
在这里插入图片描述
如果用的d的话, d ( 经 济 增 长 ) d ( 利 率 调 整 ) \frac{d(经济增长)}{d(利率调整)} d()d()就相当于考虑了两条路径,而偏导数 ∂ 经 济 增 长 ∂ 利 率 调 整 \frac{\partial经济增长}{\partial利率调整} 就只考虑了直接的影响,没有考虑到流动性偏好这条路径了。


最后我们讲一讲考研中不同的表达式中的偏导数和全导数:
链式求导法则中:
eg. z = f [ ϕ ( x , y ) , ψ ( x , y ) ] , u = ϕ ( x , y ) , v = ψ ( x , y ) z=f[\phi(x,y),\psi(x,y)],u=\phi(x,y),v=\psi(x,y) z=f[ϕ(x,y),ψ(x,y)],u=ϕ(x,y),v=ψ(x,y)
一般情况应该是: d z d x = ∂ z ∂ u d u d x + ∂ z ∂ v d v d x \frac{dz}{dx}=\frac{\partial z}{\partial u}\frac{du}{dx}+\frac{\partial z}{\partial v}\frac{dv}{dx} dxdz=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值