首先是区分一下偏导数 ∂ \partial ∂和 d d d(这里不能说全导数,全导数是一元函数中的,多元函数中没有全导数这种东西):
这里我不从定义上来纠结,作为一名人文社科专业的学生,我们就从控制金融变量(也就是我们函数中的自变量x、y),最后达到目标变量(就是函数的最终取值)的传导途径来看。
一个比较典型的例子是流动性陷阱,一般来说我们都知道降低利率会刺激经济的增长,这个很好理解的,就比如你存钱的基本上不给利息了,贷款的时候可能银行还倒贴你利息(这个比较罕见,一般就是比0高的不多了)。
在这里降低利率是我们的控制变量x、y,而经济增长是我们最终的目的,也就是函数的值。但是我们发现当利率降低到一定程度后,人们反而不愿意消费、投资了,钱都被人们雪藏起来了,这就是因为低利率影响了人们的流动性偏好,这个时候人们认为持有现金是最好的选择(有兴趣的同学可以去翻金融学相关的文章),进一步的,这个时候经济增长的目的也就达不到了。
由此我们可以看到一个如下的传导途径:
如果用的d的话, d ( 经 济 增 长 ) d ( 利 率 调 整 ) \frac{d(经济增长)}{d(利率调整)} d(利率调整)d(经济增长)就相当于考虑了两条路径,而偏导数 ∂ 经 济 增 长 ∂ 利 率 调 整 \frac{\partial经济增长}{\partial利率调整} ∂利率调整∂经济增长就只考虑了直接的影响,没有考虑到流动性偏好这条路径了。
最后我们讲一讲考研中不同的表达式中的偏导数和全导数:
链式求导法则中:
eg. z = f [ ϕ ( x , y ) , ψ ( x , y ) ] , u = ϕ ( x , y ) , v = ψ ( x , y ) z=f[\phi(x,y),\psi(x,y)],u=\phi(x,y),v=\psi(x,y) z=f[ϕ(x,y),ψ(x,y)],u=ϕ(x,y),v=ψ(x,y)
一般情况应该是: d z d x = ∂ z ∂ u d u d x + ∂ z ∂ v d v d x \frac{dz}{dx}=\frac{\partial z}{\partial u}\frac{du}{dx}+\frac{\partial z}{\partial v}\frac{dv}{dx} dxdz=∂