改进DKVMN,利用非评估学习资源
摘要
现有的知识追踪方法主要是利用学生在评估学习资源类型(如测验、作业和练习)中的表现对他们的知识进行建模,而忽略了非评估的学习资源。然而,许多学生活动是不评估的,如看视频讲座,参加讨论论坛,阅读教科书的章节,所有这些都可能有助于学生的知识增长。在本文中,我们提出了第一个基于深度学习的知识追踪模型(DMKT),该模型明确地模拟了学生在评估和非评估学习活动中的知识转移。通过DMKT,我们可以发现每个非评估和评估学习材料的潜在潜在概念,并更好地预测学生在未来评估学习资源中的表现。我们将我们提出的方法与四个真实数据集上的各种先进的知识跟踪方法进行比较,并展示了它在预测学生表现、表示学生知识和发现底层领域模型方面的有效性。
1 引言
随着教育格局向远程学习的转变,在线学习系统在复杂性和容量方面都在进步。他们可以处理更多的学生,通过不同的评估方式对学生进行评估,并为学生提供各种类型的学习资源。在这样的系统中,学生可以学习阅读部分,参加测试,观看视频讲座,并在嵌入式开发环境中练习编程。因此,在现代在线学习系统中,学生从不同类型的活动中学习,其中一些可以评估,一些不能。
尽管学习资源类型存在异质性,但目前的学生知识追踪模型大多关注评估的学习资源,而忽略了非评估的学习资源。在评估的学习资源类型中,如测验和作业,学生的表现可以