【论文解读|EDM2021】Learning from Non-Assessed Resources: Deep Multi-Type Knowledge Tracing

在这里插入图片描述


改进DKVMN,利用非评估学习资源

摘要

现有的知识追踪方法主要是利用学生在评估学习资源类型(如测验、作业和练习)中的表现对他们的知识进行建模,而忽略了非评估的学习资源。然而,许多学生活动是不评估的,如看视频讲座,参加讨论论坛,阅读教科书的章节,所有这些都可能有助于学生的知识增长。在本文中,我们提出了第一个基于深度学习的知识追踪模型(DMKT),该模型明确地模拟了学生在评估和非评估学习活动中的知识转移。通过DMKT,我们可以发现每个非评估和评估学习材料的潜在潜在概念,并更好地预测学生在未来评估学习资源中的表现。我们将我们提出的方法与四个真实数据集上的各种先进的知识跟踪方法进行比较,并展示了它在预测学生表现、表示学生知识和发现底层领域模型方面的有效性。

1 引言

随着教育格局向远程学习的转变,在线学习系统在复杂性和容量方面都在进步。他们可以处理更多的学生,通过不同的评估方式对学生进行评估,并为学生提供各种类型的学习资源。在这样的系统中,学生可以学习阅读部分,参加测试,观看视频讲座,并在嵌入式开发环境中练习编程。因此,在现代在线学习系统中,学生从不同类型的活动中学习,其中一些可以评估,一些不能。

尽管学习资源类型存在异质性,但目前的学生知识追踪模型大多关注评估的学习资源,而忽略了非评估的学习资源。在评估的学习资源类型中,如测验和作业,学生的表现可以根据他们的答案和解决方案进行评估。这些学习资源通过观察学生的表现为学生提供了一个了解知识的窗口。相反,在非评估的学习资源中,如阅读和视频讲座,这种观察不存在。因此,在与这些学习资源交互的同时评估学生的知识和表现是一项困难的任务[4,11,10]。

事实上,由于目前的知识追踪方法没有对非评估学习资源进行建模,因此识别它们的基本概念、寻找这些学习资源之间的相似性,以及在一般情况下为此类非评估学习材料建模仍然是一个具有挑战性的问题。也就是说,许多现代知识追踪模型不依赖于预定义的领域知识模型,如q矩阵,并且可以识别在问题、测验或作业中被评估的“潜在概念”[20,23,21,7,9]。当用它们的概念注释学习材料是昂贵的或不可行的时候,这是特别有用的。然而,在非评估的学习资源中发现这些潜在的概念是一个尚未开发的研究领域。最近的一些研究旨在识别评估学习材料和非评估学习材料之间的潜在概念[19]和相似之处[17]。然而,他们的发现是根据学生的静态表现,忽略了学生的顺序学习数据。

在本文中,我们认为非评估学习材料建模是追踪学生知识的必要和不可缺少的。学生从各种类型的活动中学习,忽视学生的大部分活动是学生知识追踪的一个错过的机会。特别是之前的研究表明,与各种学习活动类型一起工作对学生的学习有相当大的好处[15,2,1,12]。因此,对评估和非评估学习活动进行建模应该能够更准确地估计学生的知识状态,并预测他们在未来评估学习资源上的表现。

因此,我们提出了深度多类型知识跟踪(DMKT)模型,它不仅跟踪学生在各种学习活动类型中的知识状态,而且为发现评估和非评估学习资源的底层模式或概念提供了一个可行的解决方案。为此,DMKT根据学生在两个连续评估的学习活动中的表现来评估学生的知识收获。同时,它将估计的知识收获分配到非评估学习活动和最新评估活动之间。对于这种分布,我们使用了一种注意机制。因此,DMKT可以为每个被评估和非评估学习资源建立潜在概念的模型,在与这些学习资源交互后评估学生的知识,并预测学生在被评估学习资源上的表现。

我们在四个真实的数据集上评估了我们提出的模型,显示了建模各种学习资源类型对学生成绩预测任务的显著影响。此外,我们通过在使用各种学习资源类型时可视化学生知识来展示DMKT的可解释性。最后,我们展示了DMKT在发现学习资源的相似性和潜在概念方面的力量。

2 相关工作

学生知识追踪旨在获取学生的知识状态和知识状态转换模式,可进一步用于学生成绩预测、智能课程设计、学生任务结构的解释和发现等任务。传统的知识跟踪方法使用预定义的领域知识模型(学习资源的概念)对评估的学习资源进行知识迁移建模。

例如Drasgow等人提出了IRT,利用结构化逻辑回归对学生的二分反应进行建模,并估计学生的能力、学习资源困难[8]。BKT使用二元变量来建模学生是否获得了一个概念,使用隐马尔可夫模型来更新学生正确回答问题的概率[6,22]。然而,由于对领域知识模型进行注释是昂贵且耗时的,因此在许多实际场景中,没有提供这种预定义的领域知识模型。为了解决这一问题,新的方法是同时研究学生知识和领域知识的建模。如Lan等利用矩阵因子分解对学生知识和概念-问题关联进行建模,假设概念与问题[14]之间存在稀疏关联。另一个例子是Doan等人利用基于秩的约束[7],利用张量因式分解对学生知识有增长趋势的学生学习进行建模。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值