Knowledge Structure Enhanced Graph Representation Learning Model for Attentive Knowledge Tracing

在这里插入图片描述

摘要

知识追踪是在线学习系统中针对学习者的一种基本的个性化辅导技术。最近的KT方法采用了灵活的基于深度神经网络的模型,在这项任务中表现出色。然而,学习者练习数据的稀疏性仍然对KT的充分性提出了挑战。为了缓解稀疏性问题,大多数现有的KT研究都是在技能级别而不是问题级别上进行的,因为问题往往很多,与很少的技能相关。然而,在技能水平上,KT忽略了与问题本身及其关系相关的独特信息。在这种情况下,模型不能精确地推断学习者的知识状态,可能无法捕捉到练习序列中的长期依赖性。在知识领域,技能自然地就像一张图(边是教学概念之间的先决关系)。

我们把这样的图称为知识结构(KS)。将KS合并到KT过程中可以潜在地解决稀疏性和信息丢失问题,但由于获得域的完整KS具有挑战性和劳动密集型,因此这一途径还没有得到充分的探索。在本文中,我们提出了一种新的ks增强的具有注意机制的KT图表示学习模型(KSGKT)。我们首先探索了8种从学习者响应数据自动推断域KS的方法,并将其集成到KT过程中。然后利用图形表示学习模型,从ks增强图中获得问题和技能嵌入。为了在问题上融入更多独特的信息,我们从每个学习者的学习历史中提取了认知问题的难度。然后,我们提出了一种卷积表示方法,融合了这些独特的特征,从而获得每个问题的综合表示。这些表示形式被输入到提议的KT模型中,长期依赖关系由注意机制处理。该模型最终预测了学习者在新问题上的表现。从六个角度对三个真实数据集进行的大量实验证明了我们的模型在学习者表现建模方面的优越性和可解释性。基于KT结果,我们还提出了我们模型的三个潜在应用。

1 引言

近年来,在线学习越来越受欢迎,越来越多的智能辅导系统(it)和大规模开放在线课程(MOOC)平台提供给学习者[1,2,3]。一般来说,这些平台通过一系列个性化的学习活动来满足不同需求和知识熟练程度的学习者,从而实现知识的获取。这些适应性辅导服务的一个关键技术是学习者建模[4,5]。本文对学习者的知识水平进行建模。这个任务被称为知识追踪(KT)[6,7,8,9,10,11,12],旨在模拟学习者的表现,从而发现学习者在掌握知识概念时潜在的知识熟练程度。

在在线学习系统中,KT以纵向的方式在知识-概念粒度上评估学习成果。KT任务通常表述为根据学习者的学习历史预测学习者在新问题上的表现的问题6,4。KT和传统教育环境一样,通过提问或测验来评估学习者的知识,但与传统学习不同的是,它是基于学习者长期积累的练习记录。根据学习者的知识状态推断,为学习者提供各种适合其个人需求的适应性服务,从而提高学习者的学习效率[4]。正因为如此,KT已经成为横跨教育、计算机科学和认知科学的热门跨学科研究课题[6,4,13]。

大量的努力都花在了技能级KT[12,14]上,它基于特定领域所需的技能(或“知识概念”)执行KT。KT任务中的每个问题都与解决该问题所需的一个或多个技能相关(例如,“3+5”对应的技能是“整数相加”),并且每个技能都与许多问题相关。问题-技能映射信息通常被编码为教育专家提供的先验知识的q矩阵[11,13],可以自然地表示为问题-技能关系图(例如,见图1(左))。大多数现有的KT方法训练KT模型的是技能而不是问题,因为问题的数量远远大于技能的数量,而且大多数学生只尝试了其中的一小部分问题。因此,响应数据相当稀疏[12,14]。技能水平的KT在一定程度上是可行的,因为技能的掌握在很大程度上影响着答题的正确性。因此,在此设置下提出的各种KT方法都取得了良好的性能。
在这里插入图片描述
在技能级KT模型中,所有与特定技能相关的问题都被视为相同的输入(与一个问题对应的多个技能被合并为一个新技能)。这种方法丢失了与单个问题相关的独特信息,导致对学习者知识状态的推断不精确[15,16,12,14]。例如,在图1(左)中,“3+5”和“345+6789”这两个问题都需要“整数相加”的技能,在构建KT模型时将它们视为相同的输入,忽略了它们的不同难度。已有研究证明,问题难度无疑会影响学习者的学习表现[11,17,18],而特定问题的相对难度水平因学习者而异。对于特定的学习者来说,同一问题的难度也取决于学习者的认知水平,认知水平随时间的推移而变化。现有的工作要么忽略了问题的难度,要么假设了一个恒定的难度水平[7,8]。在后一种情况下,问题难度是问题导向的,这在动态学习过程中是不现实的[11]。认知心理学家[19]也表明,在人类学习中,由于不同学习者的知识结构不同,同一问题的难度也取决于它给不同学习者带来的认知负荷本文将这种面向用户的难度称为认知问题难度,并根据每个学习者的学习历史进行显式计算。通过将认知问题难度与问题表征联系起来,我们为每个问题引入额外的独特信息,提高了长期追踪学习者熟练程度的可靠性。

知识结构(KS)中技能之间的相互依赖性在认知科学和人工智能中早已得到承认[20,21]。教学概念之间的先决条件可以用知识图[22]表示(参见图1(右)的示例)。然而,KS(指定技能之间的关系)很少被整合到KT模型中,因为获取一个领域的完整KS是劳动密集型的,而且不容易从数据中推断出KS[23,24,25]。为了避免这些困难,大多数KT模型简单地假设所有的问题和技能都是独立的。在现实世界中,问题是相互关联的,也与解决问题所需的基本技能密切相关。当学习者从包含sk l l1的某一问题中获得知识时,他们也在一定程度上提高了sk l l2的成就(假设sk l l1与KS中的sk l l2相关)。例如,一个学习者在尝试一个需要“解方程”技能的练习时,也会加深他或她对“解方程组”技能的理解。在本文中,我们从学习者的反应数据中推导出KS,并将其与KT模型进行集成。与现有模型相比,我们的方法有两个优点:第一,它通过引用KS向问题表示中输入额外的信息(从而缓解了问题表示中的数据稀疏问题);第二,它模拟了在知识进化过程中以往经验对未来练习的影响。此外,将KS融入到KT过程中,可以捕获练习序列[26]中的长期依赖关系,进一步提高了学习者动态知识水平推断的精度。
在这里插入图片描述
此外,以前关于KT的大部分工作都代表了使用单热编码[7]建立模型的问题。结果数据往往过于稀疏,无法为KT任务表示足够的信息,从而导致性能下降[12,27,14,25]。在最近关于图表示学习的工作中,模型在图的密集嵌入上进行训练,这提高了在各种任务中的性能[28,29]。基于图神经网络通过聚合邻居信息提取图表示的强大能力,我们应用图表示学习方法从KS增强的问题-技能关系图中获得问题和技能嵌入图中的学习嵌入不仅包含了图中的显式问题-技能关系,还包含了图中的隐式问题-问题和技能-技能关系。我们还提出了一种卷积表示方法,该方法包含了额外的信息,并考虑了它们的相互作用,从而生成输入问题的密集和有意义的表示,并有可能进一步提高模型性能。


综上所述,我们提出了一种新的知识结构增强图知识追踪模型(KSGKT),该模型基于在线学习系统中学习者的练习日志来追踪学习者知识水平的演变。我们首先探索了从学习者的反应数据中推断出域KS的八种方法,并将其与原始的问题-技能关系图进行集成,得到KS增强的问题-技能关系图
利用图表示学习模型(Metapath2Vec[28]),我们从增强图中获得密集问题和技能嵌入。为克服技能级KT模型忽略与问题相关的独特信息的局限性,提出了基于学习者学习历史的认知问题难度,并计算了每个问题的技能级和问题级认知难度。最后,我们提出了一种卷积表示方法,将问题及其相关的技能嵌入信息集成到多层次的认知问题难度信息中,从而获得每个尝试问题的综合表示。这些学习者练习序列的表示形式被输入到提出的KT模型中,该模型利用注意机制考虑学习者在新问题上的长期依赖性,最终预测学习者在新问题上的表现。
主要贡献如下:

  • 我们探索了八种从学习者响应数据中自动发现域KS的方法,并将结果纳入KT过程。根据我们的知识,我们第一次使用KS增强图解决KT任务。
  • 我们提出了一个KS增强图表示学习模型,学习KS增强图中的密集问题和技能嵌入。
  • 我们提出了一种获取每个问题多层次认知难度的方法,以及一种卷积表示方法,将这些不同的异质特征融合为一个全面的问题表示。此外,KT还补充了三种注意方法。
  • 我们从六个角度对三个真实数据集进行了全面的实验评估。结果表明,该方法在动态建模学习性能和从数据中发现KS方面具有优越性和可解释性。

2 相关工作

2.1 知识追踪

概率和因子分析模型
各种模型可以动态获取学习者的长期表现,跟踪学习者的知识熟练程度随时间的变化[4]。这项任务是由贝叶斯知识追踪(BKT)[6]开创的,这是一个基于隐马尔可夫模型(HMM)的概率模型,它分别跟踪每个KC的熟练程度,而不考虑所有技能的上下文试验顺序和技能之间的相似性。为了利用整个语境序列来追踪学习者的熟练程度,研究人员提出了各种因素分析模型,如项目反应理论(IRT)[30]、附加因素模型(AFM)[31]和绩效因素分析(PFA)[32]。这些模型预先定义了一个精致的模型框架,并将考虑的因素分配为模型参数,这些参数从数据中学习来推广观察结果。IRT模型从学习者的能力和问题难度两个方面预测学习者的表现。AFM通过回答问题所涉及的技能的难度和对需要这些技能的问题的尝试次数来模拟任务成功完成的概率[31]。PFA通过分别考虑成功和失败的尝试[32]来改进AFM。一项著名的研究使用了基于分解机的知识跟踪机(KTM),为将学习相关的侧信息合并到学生模型[9]中提供了一个通用框架。KTM模型包括IRT、LFA和PFA模型。近年来,在KTM的基础上进行了进一步的研究,如DAS3H(项目难度,学生能力,技能,和学生技能实践史)[33,34]和RKTM(循环KTM)[35],通过在KTM中添加额外的信息来丰富KTM。其他研究人员将项目难度[36]、模型估计不确定性[37]等侧信息纳入概率模型和因子分析模型中。

深度学习模型
最近,各种神经网络被用于KT任务,由于其在大数据上进行顺序学习的出色能力,模型性能较传统模型有显著提高[7,8,38]。深度KT (DKT)[7]的研究取得了学习者的潜在知识熟练度,通过循环神经网络(RNN)或长短时记忆(LSTM)从练习序列中提取出学习者的潜在知识熟练度。Long等人在单状态RNN的基础上,结合学习者对问题[39]的认知水平和知识获取敏感性等学习者特征,提出了一种名为个体估计KT (Individual Estimation KT, IEKT)的新模型。KT (DKVMN)[8]的动态键值记忆网络采用了记忆增强神经网络(MANN),它使用辅助记忆来记录学习者对每个潜在概念的熟练程度。顺序键值记忆网络(SKVMNs)[26]通过统一RNN(循环建模能力)和MANN(高记忆容量)的优势对学生学习建模。一个新提出的名为Transformer的网络也已适应学生以各种方式学习。为了关注相关的交互,Transformer框架对输入数据应用了一种自我注意机制,因此将练习序列中的内部关系合并到网络中。由这项工作启发的基于注意的KT模型已经成为一个活跃的研究领域[16,15,41],其中一个代表性的工作是AKT (Attention - based KT)模型[16],该模型在该任务中取得了最先进的性能。然而,在大多数这些模型中,KT是基于特定领域中的技能。这种技能级别的KT模型不能区分包含相同技能的问题。与问题相关的独特信息的丢失可能导致对学习者知识状态的推断不精确。而且,几乎所有这些模型都简单地假设所有的问题和技能都是独立的,这在实际的学习过程中是不现实的。

基于图的模型
各种基于图的KT模型都考虑了问题与技能之间的关系[14,12,27,25]。Liu等[14]基于域中的q矩阵构建了问题-技能二部图,并利用显性问题-技能关系和隐性技能相似度和问题相似度三个约束对图中嵌入的问题和技能进行了预训练。由于问题和技能的密集嵌入包含了图中的关系,预训练的嵌入馈入KT模型优于基线模型。Yang等[12]提出了GIKT(基于图的交互KT)模型,并使用图卷积网络(GCN)将传播嵌入到问题-技能关系图上,从而将问题-技能相关性纳入其中。Sun等[42]提出了一种针对KT (CoKT)的问题-问题协同嵌入方法,将基于问题相似度的学习到的问题嵌入作为输入。Tong等[27]向KT引入了带有分层练习图的问题模式。问题模式将类似的练习聚集到同一组中,以合并问题-问题关系。Pandey等[15]基于性能数据和练习文本计算了练习-练习关系,并将其纳入关系感知型KT的转换模型中。这些方法都利用了各种图的关系信息,将问题的独特信息引入到KT任务中。但是,他们忽略了域中技能的KS信息
与我们的工作类似,Nakagawa等[25]和Chen等[20]将KS信息纳入KT过程。Chen等人的工作假设KS已经由专家给出,并将前提条件建模为排序对。这样,相关技能的掌握就受到了参考KS的约束。Nakagawa等人利用KS信息和图神经网络(GNN)来更新学习者的隐性知识状态。与之前的研究不同,我们的方法从学习者的响应数据中学习KS,并将其与q矩阵集成,构建KS增强关系图。利用Metapath2Vec方法,我们学习了所有节点的密集嵌入,其中包含了域内的多跳问题-问题、问题-技能和技能-技能关系。表1对不同类型的模型进行了比较。
在这里插入图片描述

2.2 知识结构发现

知识结构发现通过提供个性化的学习路径和服务来满足不同学习者的需求,促进了在线学习系统的智能化。一些研究已经尝试将这个过程自动化。现有的知识库发现方法大多识别出回答问题所需的潜在技能,并在域内寻找问题之间的相似性,以聚类潜在的知识库。Lindsey等人[43]的技术发现了学习者用来解决问题的技能集。这种方法假设学习者在一系列需要相同技能的问题上的表现是单调的提高。Pan等[23]利用自然语言处理技术自动推断mooc中知识概念之间的前提关系。Mussack等[44]通过结合问题特征和学习者行为发现了问题的相似性。Rihák等[45]和Nazaretsky等[46]提出了各种度量指标,将教育项目从绩效数据中聚类。他们的方法假设学习者在需要相同技能的项目上表现相似。然而,在这些研究中,需要相同潜在技能的问题簇被视为领域中的KS;而我们的显性技能则是建立在显性技能之间的先决条件关系之上的。
Wang等[47]提出了一种具有正则化的潜在变量选择方法用于认知诊断,该方法从学习者的反应数据中学习技能层次。Zhang等[24]利用DKT模型,从学习者的练习表现中发现了技能的拓扑顺序。和我们的小组一样,他们直觉地认为,从反应数据中直接提取KS是困难的,但这一困难可以通过对学习者的技能掌握进行排序来克服。因此,在本文中,我们通过对学习者解决问题的表现(即他们对潜在技能的掌握)进行排序,发现了KS中的先决技能对。

2.3 图表示学习

gnn等图表示学习模型通过其出色的图结构数据处理能力,解决了各种任务。传统的机器学习方法在从图[48]中提取和编码关于图结构的高维非欧氏信息方面能力有限。沿着图中的边缘,gnn通过传播和聚合来自邻居节点的信息,从整个图中获得节点表示。这样,节点嵌入可以总结出它们的图位置及其局部图邻域[48]的结构。得到的基于图的嵌入可以直接用于各种下游任务。在KT任务的深度学习模型中,它们缓解了单热表示的稀疏性问题。一种广泛使用的GNN模型是图卷积网络(graph convolutional network, GCN),它最近被用作KT的输入问题表示[12,27]。gcs特别适用于节点类型相同的同构图。最近的图-向量模型,如Metapath2Vec[28],已被证明在异构图表示学习中是成功的。这种模型非常适合于KT任务,因为问题-技能图是典型的异构图。本文利用Metapath2Vec模型从关系图中学习密集嵌入,并将得到的嵌入输入到跟踪学习者能力演化的模型中。

4 提出方法

本节介绍了知识跟踪的KSGKT框架,如图2所示。该框架通过知识结构发现、基于图的嵌入学习、卷积问题表示、注意机制和学习者知识状态演化五个模块来完成KT任务。在进行嵌入学习之前,我们必须将从学习者反应数据中推断出的KS整合到问题技能图中,构建KS增强的问题技能图。在构建的ks增强问题-技能图的基础上,通过图嵌入学习方法Methpath2Vec实现所有技能和问题节点的密集嵌入。

为了整合更多的问题信息,我们还从学习者的学习历史中推断出问题和技能水平上的认知问题难度。然后提出了一种卷积表示方法,将问题和技能嵌入与认知问题难度融合在一起。它考虑了每个独立的因素以及每对因素之间的相互作用,从而获得了问题的综合表示形式(见图3)。这些表示形式被输入到专注的KT网络,用于预测学习者的表现(见图4的KT程序)。为了捕捉运动序列中的长期依赖,需要运用不同的注意机制。为供参考,本文方法的算法如Alg. 1所示。
在这里插入图片描述

4.1 从数据中推断知识结构

在实际的教育场景中,一个领域的技能之间总是存在一个拓扑顺序(KS),因为技能是按顺序教授和学习的。在许多学习系统中,KS信息从未被提供,必须通过耗时的劳动才能获得。我们观察到,如果学习者没有掌握一项特定的技能,他们错误回答需要后必备技能的问题的概率将会增加。此外,学习者对一项技能的掌握程度可以通过他们在需要该技能的试题上的表现表现出来。基于这些观察,本文旨在从学习者的反应数据中发现KS。

在这里,我们从学习者掌握技能的顺序推断出KS,这是由锻炼成绩数据明确表示的

利用KT框架下的LSTM[7]对学习者练习过程的序列数据进行建模,跟踪学习者每次的知识状态。由于KT问题可以看作是基于长期时间序列数据的预测问题,LSTM特别适合于这类任务,它可以从以前的学习历史中提取有用的信息来预测未来的性能。实际上,一些其他类型的RNN模型,如香草RNN和门控循环单位细胞(GRU)模型[52]也可以用于这项任务。为了更好地与其他KT方法进行比较,并展示知识结构增强图表示学习模型的有效性,这里我们还在框架的最后部分采用了LSTM。

7 结论

为了自动获得域内的KS,我们首先研究了基于对技能掌握顺序的学习者反应数据中8种推断域KS的方法的能力。在将KS增强图与KT过程相结合后,我们利用一个图表示学习模型,从KS增强图中获得问题和技能嵌入。为了整合与问题相关的更多独特信息,我们从个体学习者的学习历史中提取自适应认知问题难度,并提出了一种将问题难度与问题本身及其相关技能嵌入融合在一起的卷积表示方法。这样我们就得到了每个问题的全面表征。将这些表示形式输入到带有注意机制的KT模型中,我们可以预测新问题的学习表现。从六个角度对三个真实数据集进行的大量实验证明了我们的模型在学习者表现建模和KS发现方面的优越性和可解释性,验证了其在真实教育环境中的潜在适用性。在未来的工作中,我们打算将KS学习以端到端的方式嵌入到我们的模型中。然后,KS将在训练过程中自动学习,而不是从学习者的表现数据中计算。这种自动化可以潜在地将KS扩展到该领域的新技能,例如,将数学KS从小学扩展到高中水平。此外,我们计划将KT整合到真实的教育场景中,根据学生的个人需求提供适当的适应性补习材料。通过案例研究,我们将验证我们的方法在在线学习中的有效性。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值