【论文解读ICCE2021】MKT - Improving Knowledge Tracing through Embedding based on Metapath

在这里插入图片描述
相关论文:KSGKT

将问题和技能之间的关系看做异构图
嵌入方法:Metapath2vec

摘要

知识追踪(knowledge tracing, KT)的目标是根据学生的学习日志,跟踪学生的知识状态,预测学生未来的学习表现。虽然很多研究都致力于挖掘输入信息,但在将学习日志作为输入时,并没有严格区分问题和所涉及的技能,从而没有充分利用技能和问题之间的内在关系,导致了性能的下降。为了解决这一问题,我们提出了一种基于元路径的内嵌预训练方法,明确考虑了领域内技能与问题之间的关系。具体来说,我们构建了一个由技能和问题组成的异构图,并利用metapath2vec方法获得了节点的有意义嵌入,从而可以将显式关系信息嵌入到技能和问题的密集表示中,同时又保持了各自的特征。将这些预训练嵌入到现有模型中,在三个公共真实数据集上的实验表明,我们的方法实现了新的最先进的性能,至少有1%的绝对AUC改进。

1 引言

知识追踪是智能辅导系统为学习者提供适应性服务的基础任务。KT的主要目的是根据学生长期的学习记录来跟踪他们的知识状态,并据此预测他们未来的表现。

目前,由于网络教育的普及,这一任务已经取得了相当大的进展。现有的模型可以分为两类:传统方法和基于深度学习的方法。贝叶斯知识追踪(Bayesian Knowledge Tracing, BKT, Corbett & Anderson, 1994)是传统方法中的一个典型模型,它利用马尔可夫模型来推断学生技能掌握的演化过程。深度知识追踪(Deep Knowledge Tracing, DKT) (Piech, Spencer, & Sohl-Dickstein, 2015)是第一个将深度学习方法应用于KT任务的模型,并取得了突破。

对于KT任务,辅导系统中的问题数量通常远远超过技能的数量。一项技能可能涉及到很多问题,而一个问题也可能涉及到不止一项技能。为了简化建模过程,提高预测效率,KT任务对模型输入进行了统一处理:传统和深度学习类别的KT模型都进行KT过程,根据技能而不是问题本身进行预测。

他们假设技能掌握可以潜在地反映学生在某种程度上能够正确地解决结合该技能的问题的可能性,因此KT模型的输入实际上是技能标签。此外,假定每个问题只与一种技能相关。对于包含多个技能的问题,生成一个新的技能来表示多个技能的组合。

因此,忽视了技能与问题之间的关系,忽视了技能与问题本身的特点,会造成两个重要的问题:一是对学生知识状态的跟踪只停留在技能层面,不能真实反映学生正确解决相关问题的实际能力;二是被忽视的关系和特征信息是预测学生成绩的关键,如果不考虑这些信息,追踪学生的知识状态可能会导致成绩下降。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值