- 基本介绍
- 模板题目
- 代码实现
基本介绍
这篇是树状数组模板2 主要内容有:
1.将某区间每一个数数加上x
2.求出某一个数的和
也就是说支持区间修改
我们可以看一下 Qi.DC 的想法 他说:“
我们在树状数组中可以用前 i 项的和来表示第 i 个数 那么当对 x ~ y 的区间进行修改的时候需要在树状数组中的第 x 个位置 + k 第 y + 1 个位置 -k 这样便维护了这个树状数组 输出时候直接输出查询即可”
这也就完成了区间修改
模板题目
见基本介绍
代码实现
Qi.DC的思路
#include<iostream>
#include<cstdio>
#include<cctype>
using namespace std;
#define in = read()
typedef long long ll;
const ll size = 500000 + 1000;
#define lowbit(x) (x & -x)
ll n,m;
ll tree[size];
ll last,next;
inline ll read(){
ll num = 0 , f = 1; char ch = getchar();
while(!isdigit(ch)){
if(ch == '-') f = -1;
ch = getchar();
}
while(isdigit(ch)){
num = num*10 + ch - '0';
ch = getchar();
}
return num*f;
}
inline void add(ll x,ll y){
while(x <= n){
tree[x] += y;
x += lowbit(x);
}
}
inline ll query(ll x){
ll ans = 0;
while(x){
ans += tree[x];
x -= lowbit(x);
}
return ans;
}
int main(){
n in; m in;
for(int i=1;i<=n;i++){
ll now; now in;
add(i,now - last);
last = now;
}
while(m --){
ll que; que in;
if(que == 1){
ll x,y,z;
x in; y in; z in;
add(x,z);
add(y + 1,-z);
}
else if(que == 2){
ll x;
x in;
printf("%d\n",query(x));
}
}
}
//COYG