【数据结构】[NOIP2013]火柴排队

题目

要最小化 a[i]-b[i]
也就是说 a 序列第 k 大的元素必须和序列 b 中第kk 大的元素位置必须一样
那么我们我们可以把a b离散化 问题将转化为b序列要交换几次可以令其等于a
假设我们现在有离散化后的序列 a = {4, 3, 1, 2} b = {1, 3, 2, 4}
我们令 q[a[i]]=b[i] 相当于以a[i]为关键字对序列b[i]排序
若序列a与序列b相等 那么此时q[a[i]]应该等于a[i]的 也就是q[i] = i
那么也就是说如果我们想让序列a与序列b相等 那么我们需要让q升序排列
于是用树状数组求逆序对

顺便复习了一下树状数组求逆序对 Wang.TY平时打的超熟结果没给我讲出来 不过后来几经辗转还是讲出来了

发现以前学的一些东西都忘了

代码如下



#include<iostream>
#include<cstdio>
#include<cctype>
#include<algorithm>

    using namespace std;
    #define in = read();
    typedef long long ll;
    typedef unsigned int ui;
    const ll size = 100000 + 10000;

        #define lowbit(x) x&-x
        struct point{   int x , y;}a[size] , b[size];

            int n;
            int mod = 99999997 , ans;
            int c[size] , f[size];

inline ll read(){
        ll num = 0 , f = 1;    char ch = getchar();

        while(!isdigit(ch)){
                if(ch == '-')   f = -1;
                ch = getchar();
        }
        while(isdigit(ch)){
                num = num*10 + ch - '0';
                ch = getchar();
        }

        return num*f;
}

inline bool cmp(point a , point b){
        return a.x < b.x;
}

inline void add(int x){
        while(x <= n){
                c[x] ++;
                x += lowbit(x);
        }
}

inline int sum(int x){
        int ans = 0;
        while(x){
                ans += c[x];
                x -= lowbit(x);
        }
        return ans;
}

int main(){
        n in;
        for(register int i=1;i<=n;i++){
                a[i].x in;  a[i].y = i;
        }
        for(register int i=1;i<=n;i++){
                b[i].x in;  b[i].y = i;
        }

        sort(a + 1 , a + n + 1 , cmp);
        sort(b + 1 , b + n + 1 , cmp);
        for(register int i=1;i<=n;i++)
                f[a[i].y] = b[i].y;
        for(register int i=1;i<=n;i++){
                add(f[i]);
                ans = (ans + i - sum(f[i])) % mod;
        }

        printf("%d" , ans);
        return 0;
}


//COYG
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值