要最小化 a[i]-b[i]
也就是说 a 序列第 k 大的元素必须和序列 b 中第kk 大的元素位置必须一样
那么我们我们可以把a b离散化 问题将转化为b序列要交换几次可以令其等于a
假设我们现在有离散化后的序列 a = {4, 3, 1, 2} b = {1, 3, 2, 4}
我们令 q[a[i]]=b[i] 相当于以a[i]为关键字对序列b[i]排序
若序列a与序列b相等 那么此时q[a[i]]应该等于a[i]的 也就是q[i] = i
那么也就是说如果我们想让序列a与序列b相等 那么我们需要让q升序排列
于是用树状数组求逆序对
顺便复习了一下树状数组求逆序对 Wang.TY平时打的超熟结果没给我讲出来 不过后来几经辗转还是讲出来了
发现以前学的一些东西都忘了
代码如下
#include<iostream>
#include<cstdio>
#include<cctype>
#include<algorithm>
using namespace std;
#define in = read();
typedef long long ll;
typedef unsigned int ui;
const ll size = 100000 + 10000;
#define lowbit(x) x&-x
struct point{ int x , y;}a[size] , b[size];
int n;
int mod = 99999997 , ans;
int c[size] , f[size];
inline ll read(){
ll num = 0 , f = 1; char ch = getchar();
while(!isdigit(ch)){
if(ch == '-') f = -1;
ch = getchar();
}
while(isdigit(ch)){
num = num*10 + ch - '0';
ch = getchar();
}
return num*f;
}
inline bool cmp(point a , point b){
return a.x < b.x;
}
inline void add(int x){
while(x <= n){
c[x] ++;
x += lowbit(x);
}
}
inline int sum(int x){
int ans = 0;
while(x){
ans += c[x];
x -= lowbit(x);
}
return ans;
}
int main(){
n in;
for(register int i=1;i<=n;i++){
a[i].x in; a[i].y = i;
}
for(register int i=1;i<=n;i++){
b[i].x in; b[i].y = i;
}
sort(a + 1 , a + n + 1 , cmp);
sort(b + 1 , b + n + 1 , cmp);
for(register int i=1;i<=n;i++)
f[a[i].y] = b[i].y;
for(register int i=1;i<=n;i++){
add(f[i]);
ans = (ans + i - sum(f[i])) % mod;
}
printf("%d" , ans);
return 0;
}
//COYG