LeetCode-104. 二叉树的最大深度

本文介绍了一种使用递归方法(深度优先搜索)来解决二叉树最大深度问题的算法。通过给出具体示例,详细解释了递归终止和递归条件,最后提供了Python3实现代码。

104. 二叉树的最大深度


给定一个二叉树,找出其最大深度。

二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。

说明: 叶子节点是指没有子节点的节点。

示例:
给定二叉树 [3,9,20,null,null,15,7]

    3
   / \
  9  20
    /  \
   15   7

返回它的最大深度 3 。

解题思路:使用递归方法(深度优先搜索)。递归的终止条件为当根节点为空时,深度为0;递归条件为树的深度等于其左子树深度与右子树深度的较大值+1。

Python3代码如下:

# Definition for a binary tree node.
# class TreeNode(object):
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution(object):
    def maxDepth(self, root):
        """
        :type root: TreeNode
        :rtype: int
        """
        if not root:
            return 0
        return 1 + max(self.maxDepth(root.left),self.maxDepth(root.right))

汽车与停车位关键点检测数据集 一、基础信息 • 数据集名称:汽车与停车位关键点检测数据集 • 图片数量: 训练集:308张图片 验证集:47张图片 测试集:22张图片 总计:377张实际场景图片 • 训练集:308张图片 • 验证集:47张图片 • 测试集:22张图片 • 总计:377张实际场景图片 • 分类类别: car(汽车):常见交通工具,用于检测车辆位置和形状。 parking-space(停车位):标识可用或占用停车区域,支持空间定位。 • car(汽车):常见交通工具,用于检测车辆位置和形状。 • parking-space(停车位):标识可用或占用停车区域,支持空间定位。 • 标注格式:YOLO格式,包含关键点坐标标签,适用于关键点检测任务。 • 数据格式:图片文件来源于真实环境,覆盖多种停车场景。 二、适用场景 • 智能停车管理系统开发:用于自动检测停车位占用状态和汽车位置,提升停车场管理效率。 • 自动驾驶与辅助驾驶系统:帮助车辆识别可用停车位并精准定位,支持自动泊车功能。 • 城市交通监控与规划:分析停车位使用模式和汽车分布,优化城市交通资源分配。 • 计算机视觉研究:支持关键点检测、目标定位等任务,推动自动驾驶和智能交通算法创新。 三、数据集优势 • 关键点标注精准:每个标注包含多个关键点坐标,精确描述汽车和停车位的形状与位置,确保模型学习细粒度特征。 • 场景多样性:数据涵盖不同环境和角度,增强模型在复杂场景下的泛化能力和鲁棒性。 • 格式兼容性强:YOLO标注格式易于集成到主流深度学习框架,方便快速部署和实验。 • 实用价值突出:直接应用于智能交通和自动驾驶领域,为停车管理和车辆导航提供可靠数据支撑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值