洛谷 P1955 [NOI2015]程序自动分析 并查集+离散化

题目描述

在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足。

考虑一个约束满足问题的简化版本:假设x1,x2,x3…代表程序中出现的变量,给定n个形如xi=xj或xi≠xj的变量相等/不等的约束条件,请判定是否可以分别为每一个变量赋予恰当的值,使得上述所有约束条件同时被满足。例如,一个问题中的约束条件为:x1=x2,x2=x3,x3=x4,x4≠x1,这些约束条件显然是不可能同时被满足的,因此这个问题应判定为不可被满足。

现在给出一些约束满足问题,请分别对它们进行判定。

输入输出格式

输入格式:
从文件prog.in中读入数据。

输入文件的第1行包含1个正整数t,表示需要判定的问题个数。注意这些问题之间是相互独立的。

对于每个问题,包含若干行:

第1行包含1个正整数n,表示该问题中需要被满足的约束条件个数。接下来n行,每行包括3个整数i,j,e,描述1个相等/不等的约束条件,相邻整数之间用单个空格隔开。若e=1,则该约束条件为xi=xj;若�e=0,则该约束条件为xi≠xj;

输出格式:
输出到文件 prog.out 中。

输出文件包括t行。

输出文件的第 k行输出一个字符串“ YES” 或者“ NO”(不包含引号,字母全部大写),“ YES” 表示输入中的第k个问题判定为可以被满足,“ NO” 表示不可被满足。

输入输出样例

输入样例#1:
2
2
1 2 1
1 2 0
2
1 2 1
2 1 1
输出样例#1:
NO
YES
说明

【样例解释1】

在第一个问题中,约束条件为:x1=x2,x1≠x2。这两个约束条件互相矛盾,因此不可被同时满足。

在第二个问题中,约束条件为:x1=x2,x1=x2。这两个约束条件是等价的,可以被同时满足。

【样例说明2】

在第一个问题中,约束条件有三个:x1=x2,x2=x3,x3=x1。只需赋值使得x1=x1=x1,即可同时满足所有的约束条件。

在第二个问题中,约束条件有四个:x1=x2,x2=x3,x3=x4,x4≠x1。由前三个约束条件可以推出x1=x2=x3=x4,然而最后一个约束条件却要求x1≠x4,因此不可被满足。

【数据范围】

这里写图片描述

【时限2s,内存512M】

Q

思路:
按e排序,先用并查集维护相等集合,然后判断;

注意:
需要离散化;

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN=300001;
int t,n,fa[MAXN],a[MAXN],tot,num;
void xiao()
{
    memset(a,0,sizeof(a));
    tot=num=0;
    return;
}
struct hh
{
    int x,y,c;
}ma[MAXN];
bool cmp(hh a,hh b)
{
    return a.c>b.c;
}
int find(int x)
{
    int r=x,t;
    while(r!=fa[r]) r=fa[r];
    while(x!=r) t=fa[x],fa[x]=r,x=t;
    return r;
}
void solve()
{
    int x,y,e;
    scanf("%d",&n);
    xiao();
    for(int i=1;i<=n;i++)
    {
        scanf("%d%d%d",&ma[i].x,&ma[i].y,&ma[i].c);
        a[++tot]=ma[i].x;
        a[++tot]=ma[i].y;
        num+=ma[i].c;
    }
    sort(a+1,a+tot+1);
    tot=unique(a+1,a+tot+1)-(a+1);
    for(int i=1;i<=n;i++)
    {
        ma[i].x=lower_bound(a+1,a+tot+1,ma[i].x)-a;
        ma[i].y=lower_bound(a+1,a+tot+1,ma[i].y)-a;
    }
    for(int i=1;i<=tot;i++) fa[i]=i;
    sort(ma+1,ma+n+1,cmp);
    for(int i=1;i<=num;i++)
    {
        int fx=find(ma[i].x),fy=find(ma[i].y);
        if(fx!=fy) fa[fx]=fy;
    }
    for(int i=num+1;i<=n;i++)
    {
        int fx=find(ma[i].x),fy=find(ma[i].y);
        if(fx==fy)
        {
            printf("NO\n");
            return;     
        }
    }
    printf("YES\n");
    return;
}
int main()
{
    scanf("%d",&t);
    while(t--) solve();
    return 0;
}
NOI(全国青少年信息学奥林匹克竞赛)是中国国内最高级别的信息学竞赛,旨在培养青少年信息学创新能力和竞赛实力。NOI的基础知识点之一是并查集,是一种用于解决集合类问题的数据结构。 修路问题可以很好地应用并查集,例如给定一些道路,每条道路连接两个城市,我们要求判断两个城市是否在同一个连通分量中(即是否可以通过已修的道路从一个城市到达另一个城市)。 在解决这个问题时,可以将每个城市看做一个节点,并用并查集来记录节点的父节点,初始时每个节点的父节点为它自身。随着修建道路,将连接的城市节点合并到同一个集合中,即将其中一个城市节点的父节点设为另一个城市节点的父节点。通过不断合并节点,最终我们可以得到若干个连通分量。 当需要判断两个城市是否在同一个连通分量中时,只需查找它们的根节点是否相同。如果根节点相同,则说明两个城市在同一个连通分量中,可以通过已修的道路相互到达;如果根节点不同,则说明两个城市不在同一个连通分量中,无法相互到达。 通过并查集,我们可以高效地解决修路问题,实现基础的连通性判断。在NOI竞赛中,修路问题常常是并查集的一道典型应用题,通过掌握并查集的原理和应用,我们可以更好地解决该类问题,提高信息学竞赛的成绩。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值