题目描述
在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足。
考虑一个约束满足问题的简化版本:假设x1,x2,x3…代表程序中出现的变量,给定n个形如xi=xj或xi≠xj的变量相等/不等的约束条件,请判定是否可以分别为每一个变量赋予恰当的值,使得上述所有约束条件同时被满足。例如,一个问题中的约束条件为:x1=x2,x2=x3,x3=x4,x4≠x1,这些约束条件显然是不可能同时被满足的,因此这个问题应判定为不可被满足。
现在给出一些约束满足问题,请分别对它们进行判定。
输入输出格式
输入格式:
从文件prog.in中读入数据。
输入文件的第1行包含1个正整数t,表示需要判定的问题个数。注意这些问题之间是相互独立的。
对于每个问题,包含若干行:
第1行包含1个正整数n,表示该问题中需要被满足的约束条件个数。接下来n行,每行包括3个整数i,j,e,描述1个相等/不等的约束条件,相邻整数之间用单个空格隔开。若e=1,则该约束条件为xi=xj;若�e=0,则该约束条件为xi≠xj;
输出格式:
输出到文件 prog.out 中。
输出文件包括t行。
输出文件的第 k行输出一个字符串“ YES” 或者“ NO”(不包含引号,字母全部大写),“ YES” 表示输入中的第k个问题判定为可以被满足,“ NO” 表示不可被满足。
输入输出样例
输入样例#1:
2
2
1 2 1
1 2 0
2
1 2 1
2 1 1
输出样例#1:
NO
YES
说明
【样例解释1】
在第一个问题中,约束条件为:x1=x2,x1≠x2。这两个约束条件互相矛盾,因此不可被同时满足。
在第二个问题中,约束条件为:x1=x2,x1=x2。这两个约束条件是等价的,可以被同时满足。
【样例说明2】
在第一个问题中,约束条件有三个:x1=x2,x2=x3,x3=x1。只需赋值使得x1=x1=x1,即可同时满足所有的约束条件。
在第二个问题中,约束条件有四个:x1=x2,x2=x3,x3=x4,x4≠x1。由前三个约束条件可以推出x1=x2=x3=x4,然而最后一个约束条件却要求x1≠x4,因此不可被满足。
【数据范围】
【时限2s,内存512M】
Q
思路:
按e排序,先用并查集维护相等集合,然后判断;
注意:
需要离散化;
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN=300001;
int t,n,fa[MAXN],a[MAXN],tot,num;
void xiao()
{
memset(a,0,sizeof(a));
tot=num=0;
return;
}
struct hh
{
int x,y,c;
}ma[MAXN];
bool cmp(hh a,hh b)
{
return a.c>b.c;
}
int find(int x)
{
int r=x,t;
while(r!=fa[r]) r=fa[r];
while(x!=r) t=fa[x],fa[x]=r,x=t;
return r;
}
void solve()
{
int x,y,e;
scanf("%d",&n);
xiao();
for(int i=1;i<=n;i++)
{
scanf("%d%d%d",&ma[i].x,&ma[i].y,&ma[i].c);
a[++tot]=ma[i].x;
a[++tot]=ma[i].y;
num+=ma[i].c;
}
sort(a+1,a+tot+1);
tot=unique(a+1,a+tot+1)-(a+1);
for(int i=1;i<=n;i++)
{
ma[i].x=lower_bound(a+1,a+tot+1,ma[i].x)-a;
ma[i].y=lower_bound(a+1,a+tot+1,ma[i].y)-a;
}
for(int i=1;i<=tot;i++) fa[i]=i;
sort(ma+1,ma+n+1,cmp);
for(int i=1;i<=num;i++)
{
int fx=find(ma[i].x),fy=find(ma[i].y);
if(fx!=fy) fa[fx]=fy;
}
for(int i=num+1;i<=n;i++)
{
int fx=find(ma[i].x),fy=find(ma[i].y);
if(fx==fy)
{
printf("NO\n");
return;
}
}
printf("YES\n");
return;
}
int main()
{
scanf("%d",&t);
while(t--) solve();
return 0;
}