聚类算法
文章平均质量分 79
聚类算法
OverlordDuke
有意向请加企鹅:3159277216
展开
-
打造城市二手房分析与可视化系统+聚类分析+58爬虫+线性回归
总的来说,这款基于Python开发的城市二手房分析与可视化系统为广大用户提供了一个强大的工具,帮助他们更好地了解和分析房地产市场。无论是投资者、购房者还是市场分析师,都可以通过这个系统做出明智的决策,把握市场机遇。我们相信,这个系统将成为您不可或缺的利器,为您的房地产决策提供有力的支持。原创 2024-03-28 14:54:40 · 858 阅读 · 0 评论 -
并行化K-means聚类算法的实现与分析
本文介绍了并行化K-means聚类算法的实现与分析,探讨了算法的原理、并行化策略以及实验结果。通过并行化优化,我们能够充分利用计算资源,加速大规模数据集的处理,从而在数据分析与挖掘领域取得更好的效果。希望本文能为相关领域的研究与实践提供一些参考和启发。原创 2024-01-26 19:46:30 · 1601 阅读 · 0 评论 -
基于特征选择和机器学习的酒店客户流失预测和画像分析
本文主要研究了基于特征选择和机器学习的酒店客户流失预测和画像分析。首先,作者介绍了业务背景和数据集的特征,包括用户、酒店和订单相关特征。在数据理解和处理部分,作者进行了描述性分析和特征增强。接着,作者提出了基于特征选择和机器学习的酒店客户流失预测方案。在模型构建和评估过程中,作者使用了不同的机器学习算法进行分类任务,并绘制了ROC曲线图来展示不同模型的性能。此外,作者还对模型进行了优化,包括使用PCA降维、LDA降维、特征选择等方法。最后,作者采用了RFM模型和K-means聚类算法进行客户画像构建。原创 2024-01-14 21:42:17 · 1182 阅读 · 0 评论 -
使用DBscan算法进行密度聚类分析
DBscan算法是一种强大的密度聚类算法,通过灵活的参数调整和高效的实现,能够应对多种数据分析场景。DBscan通过定义密度的概念来进行聚类,密度是以一个点为中心2*Eps边长的正方形区域内点的个数。通过本文的介绍,相信读者对DBscan算法有了更深入的理解,可以尝试在自己的数据集上应用该算法,挖掘出有价值的信息。具体操作包括将邻近的核心点划分到同一个簇中,将边界点划分到其领域内的核心点的簇中,而噪声点不做归属处理。通过定义核心点、边界点和噪声点,可以有效排除噪声点的干扰,提高聚类的准确性。原创 2024-01-07 19:00:49 · 1010 阅读 · 0 评论 -
深度解析基于模糊数学的C均值聚类算法
在数据挖掘和聚类分析领域,C均值聚类是一种广泛应用的方法。模糊C均值聚类(FCM)是C均值聚类的自然升级版。相对于硬划分的K均值聚类,FCM引入了模糊的隶属度概念,使数据点能够同时隶属于不同聚类中心,更灵活地捕捉数据的复杂结构。以上代码中各函数的作用包括初始化聚类中心、计算隶属度矩阵、更新聚类中心、判断是否收敛以及展示聚类结果。原创 2024-01-07 18:54:33 · 1074 阅读 · 0 评论 -
凝聚层次聚类及DBscan算法详解与Python实例
在本篇博客中,我们将深入探讨凝聚层次聚类(Agglomerative Hierarchical Clustering)和DBscan算法,并通过Python实例演示它们的应用。凝聚层次聚类是一种层次化的聚类方法,其主要思想是将每个数据点视为一个初始簇,然后逐步合并相邻的簇,直到满足停止条件。在博客的最后,我们通过实例演示了凝聚层次聚类和DBscan算法在随机点集上的应用,通过可视化的方式展示了聚类的效果。通过调整这些参数,我们可以对数据点进行不同粒度和范围的聚类,以满足具体问题的要求。原创 2024-01-05 21:09:32 · 1068 阅读 · 0 评论