基于深度学习的婴儿啼哭识别项目详解
基于深度学习的婴儿啼哭识别项目详解
一、项目背景
婴儿啼哭声是婴儿沟通需求的重要信号,对于父母和护理者而言至关重要。本项目基于PaddleSpeech框架,致力于构建婴儿啼哭识别系统,通过深度学习将啼哭声翻译成成人语言,帮助理解婴儿的需求和状态。
1.1 项目背景
婴儿啼哭声是一种生物报警器,传递婴儿的生理和心理需求。有效地识别啼哭声有助于提高婴儿护理的效率和质量。
1.2 数据说明
项目使用六类人工添加噪声的哭声作为训练数据集,分别代表不同的婴儿需求,如苏醒、换尿布、要抱抱、饥饿、困乏、不舒服。噪声数据来自Noisex-92标准数据库。
二、PaddleSpeech环境准备
安装PaddleSpeech和PaddleAudio,确保环境准备就绪。
!python -m pip install -q -U pip --user
!pip install paddlespeech paddleaudio -U -q
三、数据预处理
3.1 数据解压缩
解压缩训练数据集,获取音频文件。
!unzip -qoa data/data41960/dddd.zip
3.2 查看声音文件
通过可视化展示音频波形,了解样本数据的特征。
from paddleaudio import load
data, sr = load(file='train/awake/awake_0.wav', mono=True, dtype='float32')
print('wav shape: {}'.format(data.shape))
print('sample rate: {}'.format(sr))
plt.figure()
plt.plot(data)
plt.show()
3.3 音频文件长度处理
统一音频文件长度,确保训练数据格式一致。
# 音频信息查看
import soundfile as sf
import numpy as np
import librosa
data, samplerate = sf.read('hungry_0.wav')
channels = len(data.shape)
length_s = len(data) / float(samplerate)
format_rate = 16000
print(f"channels: {
channels}")
print(f"length_s: {
length_s}")
print(f"samplerate: {
samplerate}")
四、自定义数据集与模型训练
4.1 自定义数据集
创建自定义数据集类,包含六类婴儿需求的音频文件。
class CustomDataset(AudioClassificationDataset