深度学习
文章平均质量分 82
OverlordDuke
有意向请加企鹅:3159277216
展开
-
基于Python实现电商订单的数据分析
数据集共有51290条数据,包含订单ID、订单日期、发货日期、运输模式、客户ID、客户名称、国家、城市、产品ID、类别、子类别、产品名称、销售额、数量、折扣、利润等信息。该数据集旨在帮助超市进行“人、货、场”分析,提升销量。项目利用Python数据分析技术,从年度销售维度、地区销售维度和用户分类维度进行了分析。分析结果存储在MySQL数据库中,并通过Flask搭建的可视化平台展示,利用Echarts进行数据可视化。在对数据进行分析可视化的基础上,加入了RFM用户分类。MySQL:用于数据持久化存储。原创 2024-03-11 08:39:36 · 730 阅读 · 1 评论 -
基于MRI的阿尔兹海默症病情预测
项目所使用的数据集包含了大量的MRI图像,分为训练集和测试集,涵盖了阿尔兹海默症不同病情阶段的样本。通过对数据集的统计和分析,我们发现阿尔兹海默症患者的大脑皮层厚度存在不对称性,并且随着病情的加重,皮层厚度逐渐变薄。基于这些特征,我们可以利用图像处理技术对MRI图像进行分析,从而辅助医生进行病情判断。本项目采用了经典的ResNet50模型作为基础模型,ResNet是一种深度残差网络,具有良好的特征提取能力和泛化能力,适用于图像分类等任务。原创 2024-03-04 08:38:01 · 422 阅读 · 0 评论 -
“智能语音指令解析“ 基于NLP与语音识别的工单关键信息提取
智能语音指令解析集成了语音识别(ASR)与信息抽取(IE)等技术,广泛应用于智能语音填单、语音交互、手机APP语音唤醒等场景,提高人机交互效率。其中,智能语音填单可通过口述记录信息,并利用算法解析口述内容中的关键信息,完成自动信息录入。原创 2024-02-26 11:06:55 · 1403 阅读 · 0 评论 -
基于文本提示和语义分割的快速抠图
传统的图像语义分割模型通常固定类别进行分割,而基于文本提示的语义分割模型则具有更高的灵活性。本文介绍的模型允许用户通过输入文本标签来手动控制分割的类别信息,从而实现快速抠图的需求。原创 2024-02-26 10:29:18 · 612 阅读 · 0 评论 -
基于深度学习的连锁酒店场景识别与部署实践指南
在智能旅游行业,场景识别(又称为场景分类)是一个关键技术,它在图像检索、智能机器人、智能安防等领域有着广泛的应用。特别是在连锁酒店管理中,通过场景识别技术,可以帮助智能机器人快速分辨所处的场景环境,使得机器人能够对不同的场景做出相应的响应,提升了服务质量和效率。原创 2024-02-22 09:51:31 · 957 阅读 · 0 评论 -
基于双流卷积与小波变换的人脑纹识别
人脑产生的特定脑电波波形,被称为“脑纹”,不同个体在观看特定图片时,大脑会产生有针对性的脑电波反应,这种反应是独一无二的,每个人都不尽相同。使用了一种双分支网络,首先将脑纹信号进行离散小波变换,将脑纹信号拆解为两个函数,分别入对应的网络通路,网络整体设计思想参考了双线性卷积神经网络的结构。对于脑纹识别问题采取了分而治之的思想。在模型中,使用了双分支卷积神经网络结构,首先对脑纹信号进行离散小波变换,然后分别送入两个分支网络进行特征提取,最后将两个分支的特征进行合并,经过全连接层得出最终结果。原创 2024-02-22 09:37:15 · 644 阅读 · 0 评论 -
加速语义分割:Semantic-Fast-SAM 实现与优化
本文介绍了一种新颖的语义分割模型 Semantic-Fast-SAM,通过结合 FastSAM 和 SSA 的优点,实现了在速度和性能上的双重突破。通过简洁清晰的安装步骤和推理接口,使得用户能够轻松地应用该模型于实际项目中。未来,我们将继续优化模型的性能,并探索更多实际场景下的应用场景,为计算机视觉技术的发展贡献我们的力量。原创 2024-02-21 09:04:43 · 1234 阅读 · 0 评论 -
医学图像分割的UniMatch:半监督医学图像分割的新选择
UniMatch作为一种新颖的半监督医学图像分割方法,为解决医学图像分割中的标注困难和模型泛化问题提供了新的思路和解决方案。未来,我们将进一步完善UniMatch的功能和性能,探索更多适用于医学图像分割的技术和方法,为医学影像诊断和疾病研究提供更加有效和可靠的工具和支持。原创 2024-02-20 10:20:32 · 813 阅读 · 1 评论 -
工业智能:基于LSTM的电解槽出铝量预测与可视化系统设计与实现
技术栈:Django框架用于后端开发,MySQL数据库存储数据,ECharts实现数据可视化,同时利用线性回归和LSTM模型进行数据预测。预测平台:通过历史数据对未来数据进行预测,并利用ECharts可视化工具展示历史数据,使用户能够直观地了解数据变化趋势。参数展示:系统能够展示历史数据中的各个参数,每个参数对应一个CSV文件的一列,为用户提供全面的数据参考。时间段展示:用户可以选择不同的时间段进行数据展示,灵活地查看特定时间范围内的数据情况。预测模块。原创 2024-02-20 10:11:36 · 1111 阅读 · 0 评论 -
面向双碳环境下的LSTM商场商户电耗预测
传统能耗估算方法往往依赖于专业经验和历史数据,无法实现标准化,且受制于顾问个人能力和公司历史数据的限制。因此,本项目基于提供的真实业务场景数据,完成模型的开发与优化,支持标准化能耗数据预测工作,为降本减排提供技术支持与数据保障。原创 2024-02-19 09:16:54 · 1449 阅读 · 0 评论 -
综合特征融合的实用图像恢复技术-CMFNet
在本文中,我们将重点介绍一种基于监督学习的 AI 图像恢复模型 CMFNet(COMPOUND MULTI-BRANCH FEATURE FUSION FOR REAL IMAGE RESTORATION)。CMFNet 是一种复合多分支特征融合的图像恢复模型,通过学习不同类型的成对图像(有缺陷 / 没缺陷),实现了去模糊、去雾、去雨水等不同的图像恢复功能。原创 2024-02-19 08:45:19 · 1093 阅读 · 0 评论 -
深入理解梯度加权类激活热图(Grad-CAM)
在深度学习领域,模型的预测能力往往是黑盒子,难以解释。梯度加权类激活热图(Grad-CAM)作为一种可解释性技术,能够帮助模型开发者更好地理解模型的决策过程,从而增强模型的可解释性,提高模型的信任度和可靠性。Grad-CAM能够准确地定位模型在训练/预测图片上对某一类别标签的激活热区,从而提供模型预测的可解释性依据。它通过梯度对最后一个卷积层的全类别激活热图进行加权,得到模型在训练/预测图片上对目标类别进行推断的敏感区域的分布,并以热图的形式进行展示。原创 2024-02-13 09:01:21 · 1147 阅读 · 0 评论 -
ERNIE实现酒店情感分析(文本分类)
我们使用了一个较大规模的、去重后的非平衡酒店评论情感语料作为示例数据集。首先,我们加载和预览了数据集,然后进行了数据清洗和标签分布的分析。本项目展示了如何利用PaddleHub和预训练模型ERNIE进行酒店评论情感分析的文本分类任务。通过预训练模型和Fine-tune技术,我们能够快速构建并训练出针对特定任务的高性能文本分类模型,为各种NLP应用提供了强大的支持。原创 2024-02-13 09:00:06 · 570 阅读 · 0 评论 -
LSTR: 基于Transformer的车道形状预测
在计算机视觉领域,车道检测是自动驾驶和智能交通系统中的关键技术之一。我们推出了一种名为LSTR的车道形状预测模型,它基于Transformer架构,实现了端到端的车道形状参数输出。本文将介绍LSTR模型的设计思想、功能特性以及应用场景。原创 2024-02-02 09:20:18 · 1750 阅读 · 0 评论 -
我已经入驻多多
通过我的作品,你将能够快速部署Python环境,深入了解人工智能和JavaEE技术,并获得丰富的计算机课程设计经验。期待与更多志同道合的人一起,共同探索技术的奥秘,创造更加美好的技术世界。我的作品类型涵盖了各种技术领域,旨在为学习者提供实用的资源和指导。在CSDN拥有1100个粉丝的基础上,我期待通过面包多验证,进一步验证我的作品,并分享更多更好的资源。我的创作注重实用性和深入理解,致力于帮助他人解决技术挑战,提升技能水平。我已经入驻多多@面包多平台 啦!原创 2024-02-02 08:48:40 · 393 阅读 · 0 评论 -
SumGNN: 多类型药物相互作用预测 - 通过高效知识图谱概括
SumGNN是一个旨在解决多类型药物相互作用预测问题的创新方法,它充分利用了知识图谱的高效概括技术。我们希望通过这一研究成果,为药物研发和临床治疗提供更加可靠和高效的支持,为医学研究和临床实践带来新的突破与进展。如果你对SumGNN或者药物相互作用预测领域感兴趣,欢迎下载我们的代码并开始尝试使用。期待与你一起探索医学科学的无限可能!原创 2024-02-01 16:53:25 · 476 阅读 · 0 评论 -
Assemble Them All: 创新物理规划助力通用装配与拆卸(SIGGRAPH Asia 2022)
装配规划是现代工业制造自动化产品装配、维护和回收的核心。尽管机械装配具有重要意义和悠久的研究历史,但在给定最终装配状态时,机械装配的规划仍然是一个具有挑战性的问题。这是由于处理任意三维形状的复杂性以及真实世界部件所需的高度受限运动。在这项工作中,我们提出了一种新的方法,可以有效地为真实世界的装配规划物理上合理的装配运动和序列。我们的方法利用“按拆卸组装”原理和基于物理的模拟来有效地探索减少的搜索空间。原创 2024-01-31 14:16:42 · 995 阅读 · 0 评论 -
深度学习侧信道攻击的集成方法
采用深度神经网络进行侧面通道攻击为安全产品的泄漏检测和密钥检索提供了强大的选择。当训练用于侧通道分析的神经网络时,期望训练的模型能够实现近似函数,该近似函数能够检测泄漏的侧通道样本,同时对噪声(或非泄漏)样本不敏感。这概述了一种泛化情况,其中模型可以在单独的测试集中识别从训练集中学习的主要表示。本文讨论了在进行侧信道分析时,输出类概率如何表示强度量。此外,我们观察到这些输出概率对微小的变化很敏感,比如选择特定的测试轨迹或神经网络的权重初始化。原创 2024-01-31 14:11:19 · 1812 阅读 · 0 评论 -
NeRF:神经辐射场复杂场景的新视图合成技术
本项目提供了NeRF算法的PyTorch实现,为视觉合成和场景理解领域的研究人员和从业者提供了一个强大的工具。如果您发现这个实现或预训练模型对您有所帮助,请考虑引用作者的工作以及本项目的贡献。希望通过本博客能够帮助您更好地理解和使用NeRF-pytorch,探索计算机视觉领域的新技术和应用。原创 2024-01-27 09:12:46 · 1247 阅读 · 0 评论 -
基于深度学习的狗狗类别检测
斯坦福犬数据集是一个包含来自世界各地的 120 种犬的图像的数据集。这个数据集是使用 ImageNet 的图像和注释构建的,用于完成细粒度的图像分类任务。这个数据集最初是为了进行细粒度图像分类而收集的,这是一个具有挑战性的问题,因为某些犬种具有几乎相同的特征或颜色和年龄不同。本文介绍了狗狗识别项目,从数据集介绍到环境准备、模型配置、训练与评估,最终到模型推理与部署,全面展示了图像识别技术在狗狗识别领域的应用与实现过程。原创 2024-01-27 08:52:19 · 1841 阅读 · 0 评论 -
ConceptBert:突破视觉问答的概念认知边界
ConceptBert的原始论文由 François Gardères、Maryam Ziaeefard、Baptiste Abeloos 和 Freddy Lécué 共同完成,题为《ConceptBert: Concept-Aware Representation for Visual Question Answering》。通过深入了解ConceptBert的实现,我们可以更好地理解其在视觉问答领域的应用。原创 2024-01-25 09:47:12 · 1028 阅读 · 0 评论 -
ICCV 2021 广义源无关领域自适应
领域自适应(DA)旨在将从源领域学习到的知识转移到未标记的目标领域。最近的一些工作涉及无源域自适应(SFDA),其中只有源预训练模型可用于自适应到目标域。然而,这些方法没有考虑保持源性能,这在实际应用中具有很高的实用价值。在本文中,我们提出了一种新的域自适应范式,称为广义无源域自适应(G-SFDA),其中学习的模型需要在目标域和源域上都表现良好,在自适应过程中只能访问当前未标记的目标数据。原创 2024-01-25 09:38:15 · 1020 阅读 · 0 评论 -
基于深度学习的细胞感染性识别与判定
通过引入深度学习技术,我们能够更精准地识别细胞是否受到感染,为医生提供更及时的信息,有助于制定更有效的治疗方案。基于深度学习的方法通过学习大量样本,能够自动提取特征并进行准确的感染性判定,为医学研究提供了更高效和可靠的手段。通过引入先进的深度学习技术,我们能够实现更快速、准确的感染性判定,为医学研究和临床实践提供更为可靠的工具。其准确性和效率将为医学研究带来新的突破,为疾病的早期诊断和治疗提供更可靠的支持。通过大规模的训练,模型能够学到细胞感染的特征,并在未知数据上做出准确的预测。原创 2024-01-21 15:52:40 · 831 阅读 · 0 评论 -
基于BERT对中文邮件内容分类
本文是《用BERT做中文邮件内容分类》系列的第二篇,该系列项目持续更新中。系列的起源是《使用PaddleNLP识别垃圾邮件》项目,旨在解决企业面临的垃圾邮件问题,通过深度学习方法探索多语言垃圾邮件的内容、标题提取与分类识别。原创 2024-01-21 15:40:14 · 1461 阅读 · 0 评论 -
基于深度学习的老黑白视频修复
随着深度学习技术的不断发展,图像修复技术在各个领域都取得了显著的成果。在这个项目中,我们将使用PaddleGAN来实现对老北京黑白视频的修复。这个项目的背景是为了保护和恢复珍贵的历史视频资料,使其更适于现代观众观看,并延长其保存寿命。通过图像补帧、上色和超分辨率等技术,我们可以提高视频的质量,使其更加清晰、生动,同时保留了历史的原汁原味。原创 2024-01-19 18:42:13 · 1246 阅读 · 0 评论 -
视频快速转人体关键点检测
人体关键点检测在计算机视觉领域中扮演着至关重要的角色。在2014年之前,研究者主要采用SIFT、HOG等特征算子进行特征提取,并结合图结构模型来实现关节点检测。然而,随着深度学习的崛起以及多任务的结合,研究者开始将深度学习与人体关键点检测任务相结合。深度学习通过训练可以学到复杂的映射关系,从而替代了SIFT、HOG等人工特征提取方法,具有更强的鲁棒性和表达能力。在目标识别和目标检测方面的研究成果证明了深度学习的优势,因此深度学习成为解决上述问题的理想选择。原创 2024-01-19 09:45:13 · 509 阅读 · 0 评论 -
基于深度学习的实例分割的Web应用
这是一个基于深度学习的实例分割Web应用的项目介绍。该项目使用PaddlePaddle框架,并以PaddleSeg训练的图像分割模型为例。项目总结了从零开始,全流程地介绍了如何将基于PaddlePaddle的图像分割模型部署成Web应用。利用Flask,Paddle模型的应用部署变得简单快捷。项目偏重于演示,实际工业化实践中需要进行进一步的开发和优化。原创 2024-01-15 15:32:55 · 733 阅读 · 0 评论 -
基于深度学习的桃子熟度与大小智能检测
通过PaddleHub,搭建一套完整的水果分拣系统变得简单易行。借助深度学习工具,我们能够轻松实现桃子熟度与大小的智能检测,为农业生产提供了高效的解决方案。快来尝试吧!原创 2024-01-15 15:25:20 · 994 阅读 · 0 评论 -
基于深度学习的多类别电表读数识别方案详解
我国电力行业发展迅速,电表作为测电设备经历了普通电表、预付费电表和智能电表三个阶段的发展。虽然智能电表具有通信功能,但环境和设备使得智能电表具有不稳定性,非智能电表仍然无法实现自动采集。采集到的大量电表图片如果能够借助人工智能技术批量检测和识别,将会大幅提升效率和精度。在本系列项目中,使用Paddle工具库实现一个OCR垂类场景。原始数据集是一系列电度表的照片,类型较多,需要完成电表的读数识别,对于有编号的电表,还要完成其编号的识别。原创 2024-01-14 21:33:53 · 1523 阅读 · 0 评论 -
最小化构建基于深度学习的原子间势能和力场模型-DeePMD-kit
DeePMD-kit是一个用Python/C++编写的软件包,旨在最小化构建基于深度学习的原子间势能和力场模型以及执行分子动力学(MD)所需的工作量。这为分子模拟中准确性与效率的两难问题提供了新的解决方案。DeePMD-kit的应用范围从有限分子到扩展系统,从金属系统到化学键合系统。原创 2024-01-14 21:04:23 · 1534 阅读 · 0 评论 -
CSP网络结构实战 - 降低计算量的特征融合方式
CSPNet通过引入梯度变化的整合机制,从而降低推理过程中的计算量。其核心思想是将输入切分,通过新的特征融合方式来降低计算瓶颈和内存成本,从而在轻量化的同时保持模型准确性。CSPNet可以与多种经典网络结构如ResNet、ResNeXt和DenseNet结合使用。通过实验我们可以发现,在引入CSP结构后,模型参数量显著减少,计算量降低,同时准确性能够得到保证。然而,由于在每个阶段中增加了额外的卷积层,模型大小有所增加。对于不同数据集和网络结构,可以进一步尝试CSP的应用,例如在ResNet等网络中的应用。原创 2024-01-14 20:45:57 · 2079 阅读 · 0 评论 -
基于NLP的恶意网页识别
在本文中,我们通过优化HTML标签提取结果,使用PaddleNLP进行预训练模型Fine-tune,最终将训练好的模型导出并部署成可用的Python应用程序。这一系列步骤构建了一个完整的恶意网页识别系统,可以帮助企业更好地保护用户免受网络攻击。在未来的工作中,我们可以考虑将网页内容的其他组成部分,如URL链接、图片信息等,加入到系统中,进一步提升恶意网页识别的准确性。原创 2024-01-13 19:08:31 · 1239 阅读 · 0 评论 -
使用RNN完成IMDB电影评论情感分析
本示例教程演示如何在IMDB数据集上使用RNN网络完成文本分类的任务。IMDB数据集包含对电影评论进行正向和负向标注的数据,共有25000条文本数据作为训练集,25000条文本数据作为测试集。通过搭建RNN网络,对文本数据进行预处理、模型训练和评估,最终实现了对电影评论情感的分类。本示例中使用一个序列特性的RNN网络,在查找到每个词对应的embedding后,取平均作为一个句子的表示。文本数据中,每一句话的长度都是不一样的,为了方便后续的神经网络的计算,通常使用padding的方式对齐数据。原创 2024-01-13 18:56:27 · 1297 阅读 · 0 评论 -
基于深度学习的婴儿啼哭识别项目详解
婴儿啼哭声是婴儿沟通需求的重要信号,对于父母和护理者而言至关重要。本项目基于PaddleSpeech框架,致力于构建婴儿啼哭识别系统,通过深度学习将啼哭声翻译成成人语言,帮助理解婴儿的需求和状态。原创 2024-01-13 18:55:52 · 2445 阅读 · 1 评论 -
深度学习在交通标志识别中的应用
基于CNN的交通标志识别是深度学习在交通领域中的一个重要应用。通过利用深度学习的强大能力,我们能够更准确、快速地识别道路上的各种标志,为智能交通系统的发展提供有力支持。在未来,随着技术的不断演进,交通标志识别将继续在实际应用中发挥重要作用。原创 2024-01-10 08:51:55 · 772 阅读 · 0 评论 -
CarRacing DQN: 深度 Q 学习训练自驾车
本博客深入剖析了使用 DQN 算法训练自驾车代理的过程。通过经验回放和目标网络的应用,模型逐渐学会优化 Q 值以实现更好的导航策略。深度 Q 学习为解决复杂环境中的决策问题提供了一种强大而灵活的方法,为自动驾驶领域的研究和应用提供了新的思路。原创 2024-01-05 20:30:48 · 1262 阅读 · 0 评论 -
Flappy Bird QDN PyTorch博客 - 代码解读
在本博客中,我们将介绍如何使用QDN(Quantile Dueling Network)算法,在PyTorch平台下训练Flappy Bird游戏。QDN算法是一种强化学习算法,特别适用于处理具有不确定性的环境,如游戏。原创 2024-01-04 23:03:22 · 1907 阅读 · 2 评论 -
车牌识别系统设计与实现
通过整合OpenCV、CNN和PyQt5技术,本车牌识别系统不仅能够准确地定位和识别车牌,而且具备用户友好的交互界面。希望这个系统能够在实际应用中为用户提供高效、准确的车牌识别服务。欢迎留言讨论,共同探讨车牌识别系统的设计和优化。原创 2023-12-31 10:27:57 · 701 阅读 · 0 评论 -
Python实现的面部健康特征识别系统
本文将介绍一个基于Python的面部健康特征判别系统,该系统利用互联网获取的公开数据集,分为健康、亚健康和不健康三个类别。功能包括模型训练和前台识别测试界面,界面中包含图像上传和识别结果返回的功能。模型训练阶段包括读取图像、处理图像、模型训练,以及利用训练好的模型进行图像识别等多个步骤。未来,该系统可以进一步扩展,增加更多面部特征的判别,为健康领域的研究和实践提供更多可能性。我们将介绍系统的前台识别测试界面,展示用户如何通过简单的操作上传面部图像,并查看系统返回的面部健康特征判别结果。原创 2023-12-30 08:54:28 · 761 阅读 · 1 评论 -
【基于BP神经网络的房价预测系统设计与实现】
本文介绍了一项基于Python技术、BP神经网络模型和Flask框架的房价预测系统。通过爬取58同城的二手房数据构建数据集,实现了数据的爬取、预处理、分析和可视化。系统功能包括用户登录注册、房价数据展示、房价变化趋势、各区房价对比、房间数和朝向分析以及房价预测等,为购房者提供了全面的信息支持。原创 2023-12-15 14:52:53 · 522 阅读 · 0 评论