- 博客(11)
- 收藏
- 关注
原创 对图像进行ps制作语义分割数据集
在语义分割中,经常会出现由于数据原因从而导致分割效果比较差,除了一些常用的翻转等图像增强方法,今天本人测试了将部分分割目标数据ps到原始图像上并同时完成标签制作的代码,使模型效果得到了一定提升。...
2022-08-15 14:45:31 1836 4
原创 labelme线和点转为png宽度大小设置
在使用labelme制作数据集的过程中,出现了一个问题,在图上勾了比较多的线,但是转为png之后线的宽度非常宽,导致标签精度很低,因此需要进行调整。首先看了生成的json文件 如图所示。在json文件中都是点的数据,因此在转为便签图应该是用点去连成线的,所以配置参数应该就生成图像的地方,一点点debug就行,最后可以在shape文件里面找到下图函数shapes_to_mask,可以看到默认的线宽和点的大小分别是10和5(这里由于我数据集的需求我调成了6),大家可以根据所需线和点的大小去调整。
2022-04-15 14:31:53 1392 5
原创 MMseg可视化结果分析工具
今天找了一下mmseg里面的结果分析功能,由于在官方文档没有找到所以只能找包含matplotlib的文件,是tools文件下面的analyze_logs.py这个文件,启动的话需要配置一下json_logs参数,即需要进行可视化分析的json文件路径,分析结果如图所示(我的结果太垃圾了)...
2022-04-07 21:21:16 1844 2
原创 MMSegmentation遇到的问题汇总(不断更新)
首先说明一下我的运行环境是在win10下的遇到的第一个问题就是在训练的时候不知道在哪里能运行模型,后来参考mmsegmentation文档才明白该在哪里进行train,具体的train文件是在tools下面的train文件为了方便起见我并没有在命令行配置参数,而是直接修改train文件config我默认的default是我自己根据数据集对原模型进行修改而得到的,当然也可以直接用config里面的模型文件,workdir是输出的log文件路径同时数据集文件里面我用的直接路径,并
2022-04-06 12:06:58 3338 1
原创 DeepLab一家
DeepLab是谷歌为了语义分割又做的一系列工作,在多个开源数据集中都取得了不错的成果,DeepLabv1发表于2014年,后于2016、2017、2018分别提出了V2,V3以及V3+的版本,在mmsegmentation里面主要集成了V3以及V3+的版本,应该也是DeepLab这一家里面效果最好的两个了。作为当前工业以及学术上都用的比较广泛的模型,DeepLab这一家究竟优势在哪里呢,参考mmLab官方的讲解视频,可以发现DeepLab有三宝,分别是:1、使用空洞卷积解决网络下采样的问题
2022-04-04 16:37:39 4551
原创 BackBone—Resnet
在介绍之前首先理解一下BackBone的含义。backbone这个单词原意指的是人的脊梁骨,后来引申为支柱,核心的意思。在CV领域,一般先对图像进行特征提取(常见的有vggnet,resnet,因为这些网络对于特征提取的效果比较好),这一部分是整个CV任务的根基,在通过BackBone生成的featmap的基础上再进行语义分割任务,本人觉得可以简单将BackBone理解为encode,对于图像进行特征编码,后面接上不同的encode进行所需任务,简单看了一下目前mmsegmentation里面的Ba
2022-04-01 14:19:37 5467
原创 每日二学——Unet
今天总结了一下Unet网络,作为语义分割非常火爆的一篇论文,本文是作者写于2015年,论文链接https://arxiv.org/abs/1505.04597Unet最初提出的初衷是为了解决医学图像分割问题,在模型结构上采用了U型设计这个结构就是先对图片进行卷积和池化,在Unet论文中是池化4次,比方说一开始的图片是224x224的,然后下采样形成112x112,56x56,28x28,14x14四个不同尺寸的特征。然后我们对14x14的特征图做上采样,得到28x28的特征图,这个28x28的特征图
2022-03-31 22:01:39 1420
原创 每日一学——FCN
在最近的学习过程中,发现了一个比较好的框架MMCV,在该框架下对于模型参数等进行调整比较方便,由于我目前的主要学习内容是图像语义分割,因此接下来几天我会对于MMSegmentation里面的每一个模型进行学习并且自己尝试手写模型。首先第一个就是语义分割的开山鼻祖——FCN,这是第一个在进行下采样后又上采样的模型,开启了传统的编码器解码器模式,下面是FCN的模型图可以看出FCN对于图像进行下采样到最后, 在上采样的过程中有比较明显的跳跃链接结构,如下图所示其中:FCN32s:从
2022-03-31 14:41:45 3429
原创 Labelme直接生成灰度图
在labelme使用过程中,有些数据导入模型过程中,导入的是灰度图像,但是labelme批量生成的是彩色图像,因此参考网上一个老哥的方法后加了点修改,让labelme直接批量生成灰度图以及可视化图像。 参考链接import argparseimport jsonimport osimport os.path as ospimport base64import warningsfrom PIL import Imageimport PIL.Imageim...
2022-03-31 14:20:40 3543
原创 语义分割中样本分布不均衡怎么办
参考知乎链接语义分割中样本类别极不平衡应该怎么处理? - 知乎修改损失函数过程中可以参考,个人觉得dice+falco loss效果比较好从loss处理图像分割中类别极度不均衡的状况---keras_chestnut--的博客-CSDN博客_图像分割 类别不平衡数据增强可以参考语义分割数据增强(Data augmentation for semantic segmentation)_codibility的博客-CSDN博客_分割 数据增强同样可参考第一个回答,感觉效果比较明显小目标的图像语义分割,.
2022-03-29 19:33:50 3288
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人