每日二学——Unet

本文介绍了Unet网络结构,它主要用于解决医学图像分割问题。Unet采用U型设计,通过卷积和池化对图像进行处理,并利用上采样与特征拼接来融合多尺度信息。与FCN相比,Unet在每个上采样阶段都进行特征融合,提供了更丰富的特征表示。文章还提到了Unet的实现代码。
摘要由CSDN通过智能技术生成

今天总结了一下Unet网络,作为语义分割非常火爆的一篇论文,本文是作者写于2015年,论文链接https://arxiv.org/abs/1505.04597

Unet最初提出的初衷是为了解决医学图像分割问题,在模型结构上采用了U型设计

这个结构就是先对图片进行卷积和池化,在Unet论文中是池化4次,比方说一开始的图片是224x224的,然后下采样形成112x112,56x56,28x28,14x14四个不同尺寸的特征。然后我们对14x14的特征图做上采样,得到28x28的特征图,这个28x28的特征图与之前的28x28的特征图进行通道的拼接concat,然后再对拼接之后的特征图做卷积和上采样,得到56x56的特征图,再与之前的56x56的特征拼接,卷积,再上采样,经过四次上采样可以得到一个与输入图像尺寸相同的224x224,再对该图像根据类型进行1*1卷积生成类别数的heatmap然后作为softmax函数的输入,算出概率比较大的softmax,然后再进行loss,反向传播计算。

与FCN不同的是Unet融合多尺度信息通过对于通道数的叠加的concat方法,而FCN是点的相加的add方法。

Unet相对于FCN的优点在于5个pooling layer实现了网络对图像特征的多尺度特征识别,而且Unet在上采

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值