DeepLab是谷歌为了语义分割又做的一系列工作,在多个开源数据集中都取得了不错的成果,DeepLabv1发表于2014年,后于2016、2017、2018分别提出了V2,V3以及V3+的版本,在mmsegmentation里面主要集成了V3以及V3+的版本,应该也是DeepLab这一家里面效果最好的两个了。
作为当前工业以及学术上都用的比较广泛的模型,DeepLab这一家究竟优势在哪里呢,参考mmLab官方的讲解视频链接【通用视觉框架 OpenMMLab 字幕版】第五讲 语义分割 —刘子纬教授_哔哩哔哩_bilibili,可以发现DeepLab有三宝,分别是:
1、使用空洞卷积解决网络下采样的问题
2、使用条件随机场CRF作为后处理手段,精细化分割图
3、使用多尺度的空洞卷积(ASPP模块)捕捉上下文信息