DeepLab一家

本文介绍了DeepLab模型在语义分割中的应用及其优势,包括空洞卷积用于保持高分辨率特征,条件随机场(CRF)提升分割精度,以及多尺度的空洞卷积(ASPP)来捕获上下文信息。DeepLabV3+结合Unet思想,逐步上采样并融合低层次特征,以优化分割结果。
摘要由CSDN通过智能技术生成

DeepLab是谷歌为了语义分割又做的一系列工作,在多个开源数据集中都取得了不错的成果,DeepLabv1发表于2014年,后于2016、2017、2018分别提出了V2,V3以及V3+的版本,在mmsegmentation里面主要集成了V3以及V3+的版本,应该也是DeepLab这一家里面效果最好的两个了。

作为当前工业以及学术上都用的比较广泛的模型,DeepLab这一家究竟优势在哪里呢,参考mmLab官方的讲解视频链接【通用视觉框架 OpenMMLab 字幕版】第五讲 语义分割 —刘子纬教授_哔哩哔哩_bilibili,可以发现DeepLab有三宝,分别是:

1、使用空洞卷积解决网络下采样的问题

2、使用条件随机场CRF作为后处理手段,精细化分割图

3、使用多尺度的空洞卷积(ASPP模块)捕捉上下文信息

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值