opencv学习---计算图像的水平积分投影和垂直积分投影

opencv学习---计算图像的水平积分投影和垂直积分投影

标签: opencv水平积分投影垂直积分投影
1806人阅读 评论(1) 收藏 举报
分类:
利用OPENCV计算图像的水平积分投影和垂直积分投影
        在做图像处理时会经常需要接触到各种目标提取的方法,其中最常见的就是利用积分投影对目标进行提取分割,下面就直接上代码,通过代码来介绍一下如何获得图像的水平积分投影和垂直积分投影。该代码编写风格较为简单,适合刚入门学习opencv的新手。
  1. <span style="font-size:18px;">#include<opencv2\opencv.hpp>  
  2. #include<stdio.h>  
  3. using namespace cv;  
  4. Mat VerticalProjection(Mat srcImage)//垂直积分投影  
  5. {  
  6.     if (srcImage.channels() > 1)  
  7.         cvtColor(srcImage, srcImage, CV_RGB2GRAY);  
  8.     Mat srcImageBin;  
  9.     threshold(srcImage, srcImageBin, 120, 255, CV_THRESH_BINARY_INV);  
  10.     imshow("二值图", srcImageBin);  
  11.     int *colswidth = new int[srcImage.cols];  //申请src.image.cols个int型的内存空间  
  12.     memset(colswidth, 0, srcImage.cols * 4);  //数组必须赋初值为零,否则出错。无法遍历数组。  
  13.     //  memset(colheight,0,src->width*4);    
  14.     // CvScalar value;   
  15.     int value;  
  16.     for (int i = 0; i < srcImage.cols; i++)  
  17.     for (int j = 0; j < srcImage.rows; j++)  
  18.     {  
  19.         //value=cvGet2D(src,j,i);  
  20.         value = srcImageBin.at<uchar>(j, i);  
  21.         if (value == 255)  
  22.         {  
  23.             colswidth[i]++; //统计每列的白色像素点    
  24.         }  
  25.     }  
  26.     Mat histogramImage(srcImage.rows, srcImage.cols, CV_8UC1);  
  27.     for (int i = 0; i < srcImage.rows; i++)  
  28.     for (int j = 0; j < srcImage.cols; j++)  
  29.     {  
  30.         value = 255;  //背景设置为白色。   
  31.         histogramImage.at<uchar>(i, j) = value;  
  32.     }  
  33.     for (int i = 0; i < srcImage.cols; i++)  
  34.     for (int j = 0; j < colswidth[i]; j++)  
  35.     {  
  36.         value = 0;  //直方图设置为黑色  
  37.         histogramImage.at<uchar>(srcImage.rows - 1 - j, i) = value;  
  38.     }  
  39.     imshow(" 垂直积分投影图", histogramImage);  
  40.     return histogramImage;  
  41. }  
  42. Mat HorizonProjection(Mat srcImage)//水平积分投影  
  43. {  
  44.     if (srcImage.channels() > 1)  
  45.         cvtColor(srcImage, srcImage, CV_RGB2GRAY);  
  46.     Mat srcImageBin;  
  47.     threshold(srcImage, srcImageBin, 120, 255, CV_THRESH_BINARY_INV);  
  48.     imshow("二值图", srcImageBin);  
  49.     int *rowswidth = new int[srcImage.rows];  //申请src.image.rows个int型的内存空间  
  50.     memset(rowswidth, 0, srcImage.rows * 4);  //数组必须赋初值为零,否则出错。无法遍历数组。  
  51.     int value;  
  52.     for (int i = 0; i<srcImage.rows; i++)  
  53.     for (int j = 0; j<srcImage.cols; j++)  
  54.     {  
  55.         //value=cvGet2D(src,j,i);  
  56.         value = srcImageBin.at<uchar>(i, j);  
  57.         if (value == 255)  
  58.         {  
  59.             rowswidth[i]++; //统计每行的白色像素点    
  60.         }  
  61.     }  
  62.     Mat histogramImage(srcImage.rows, srcImage.cols, CV_8UC1);  
  63.     for (int i = 0; i<srcImage.rows; i++)  
  64.     for (int j = 0; j<srcImage.cols; j++)  
  65.     {  
  66.         value = 255;  //背景设置为白色。   
  67.         histogramImage.at<uchar>(i, j) = value;  
  68.     }  
  69.     //imshow("d", histogramImage);  
  70.     for (int i = 0; i<srcImage.rows; i++)  
  71.     for (int j = 0; j<rowswidth[i]; j++)  
  72.     {  
  73.         value = 0;  //直方图设置为黑色  
  74.         histogramImage.at<uchar>(i, j) = value;  
  75.     }  
  76.     imshow("水平积分投影图", histogramImage);  
  77.     delete[] rowswidth;//释放前面申请的空间  
  78.     return histogramImage;  
  79.   
  80. }  
  81. int main()  
  82. {  
  83.     Mat srcImage = imread("145.png");  
  84.     imshow("原图", srcImage);  
  85.     Mat VP;  
  86.     VP = VerticalProjection(srcImage);  
  87.     Mat HP;  
  88.     HP = HorizonProjection(srcImage);  
  89.     waitKey(0);  
  90.     return 0;  
  91.   
  92. }</span>  
#include<opencv2\opencv.hpp>
#include<stdio.h>
using namespace cv;
Mat VerticalProjection(Mat srcImage)//垂直积分投影
{
	if (srcImage.channels() > 1)
		cvtColor(srcImage, srcImage, CV_RGB2GRAY);
	Mat srcImageBin;
	threshold(srcImage, srcImageBin, 120, 255, CV_THRESH_BINARY_INV);
	imshow("二值图", srcImageBin);
	int *colswidth = new int[srcImage.cols];  //申请src.image.cols个int型的内存空间
	memset(colswidth, 0, srcImage.cols * 4);  //数组必须赋初值为零,否则出错。无法遍历数组。
	//  memset(colheight,0,src->width*4);  
	// CvScalar value; 
	int value;
	for (int i = 0; i < srcImage.cols; i++)
	for (int j = 0; j < srcImage.rows; j++)
	{
		//value=cvGet2D(src,j,i);
		value = srcImageBin.at<uchar>(j, i);
		if (value == 255)
		{
			colswidth[i]++; //统计每列的白色像素点  
		}
	}
	Mat histogramImage(srcImage.rows, srcImage.cols, CV_8UC1);
	for (int i = 0; i < srcImage.rows; i++)
	for (int j = 0; j < srcImage.cols; j++)
	{
		value = 255;  //背景设置为白色。 
		histogramImage.at<uchar>(i, j) = value;
	}
	for (int i = 0; i < srcImage.cols; i++)
	for (int j = 0; j < colswidth[i]; j++)
	{
		value = 0;  //直方图设置为黑色
		histogramImage.at<uchar>(srcImage.rows - 1 - j, i) = value;
	}
	imshow(" 垂直积分投影图", histogramImage);
	return histogramImage;
}
Mat HorizonProjection(Mat srcImage)//水平积分投影
{
	if (srcImage.channels() > 1)
		cvtColor(srcImage, srcImage, CV_RGB2GRAY);
	Mat srcImageBin;
	threshold(srcImage, srcImageBin, 120, 255, CV_THRESH_BINARY_INV);
	imshow("二值图", srcImageBin);
	int *rowswidth = new int[srcImage.rows];  //申请src.image.rows个int型的内存空间
	memset(rowswidth, 0, srcImage.rows * 4);  //数组必须赋初值为零,否则出错。无法遍历数组。
	int value;
	for (int i = 0; i<srcImage.rows; i++)
	for (int j = 0; j<srcImage.cols; j++)
	{
		//value=cvGet2D(src,j,i);
		value = srcImageBin.at<uchar>(i, j);
		if (value == 255)
		{
			rowswidth[i]++; //统计每行的白色像素点  
		}
	}
	Mat histogramImage(srcImage.rows, srcImage.cols, CV_8UC1);
	for (int i = 0; i<srcImage.rows; i++)
	for (int j = 0; j<srcImage.cols; j++)
	{
		value = 255;  //背景设置为白色。 
		histogramImage.at<uchar>(i, j) = value;
	}
	//imshow("d", histogramImage);
	for (int i = 0; i<srcImage.rows; i++)
	for (int j = 0; j<rowswidth[i]; j++)
	{
		value = 0;  //直方图设置为黑色
		histogramImage.at<uchar>(i, j) = value;
	}
	imshow("水平积分投影图", histogramImage);
	delete[] rowswidth;//释放前面申请的空间
	return histogramImage;

}
int main()
{
	Mat srcImage = imread("145.png");
	imshow("原图", srcImage);
	Mat VP;
	VP = VerticalProjection(srcImage);
	Mat HP;
	HP = HorizonProjection(srcImage);
	waitKey(0);
	return 0;

}

运行结果:

总的来说,对于计算图像的垂直或水平积分投影,最重要的还是对图像的二值化操作,一个合适的二值化操作,再通过积分投影往往就能比较容易提取出目标;一个垃圾的二值化操作是无法通过投影的方法提取出目标的。


1
0
 
 
柱面变换是一种将图像从平面投影变换到柱面表面的方法。在计算机视觉中,柱面变换可以用于纠正摄像机的透视畸变,使图像保持水平垂直线条的正确性。 在 OpenCV 中,可以使用 cv2.remap() 函数进行柱面变换。该函数需要两个输入参数:源图像和一个变换矩阵。变换矩阵可以通过 cv2.getOptimalNewCameraMatrix() 函数计算得出。 下面是一个简单的柱面变换示例: ``` python import cv2 import numpy as np img = cv2.imread('image.jpg') h, w = img.shape[:2] # 计算变换矩阵 f = 500 # 摄像机的焦距 K = np.array([[f, 0, w/2], [0, f, h/2], [0, 0, 1]]) # 内参矩阵 R = np.eye(3) # 旋转矩阵 t = np.array([0, 0, 0]) # 平移向量 new_K, roi = cv2.getOptimalNewCameraMatrix(K, np.eye(3), (w, h), 1, (w, h)) # 计算映射 map_x, map_y = cv2.initUndistortRectifyMap(K, np.eye(3), None, new_K, (w, h), cv2.CV_32FC1) # 进行柱面变换 dst = cv2.remap(img, map_x, map_y, cv2.INTER_LINEAR) cv2.imshow('original', img) cv2.imshow('cylindrical', dst) cv2.waitKey(0) cv2.destroyAllWindows() ``` 在上面的代码中,我们首先读取了一张图像,然后计算了变换矩阵。接着,我们使用 cv2.initUndistortRectifyMap() 函数计算了映射表,最后使用 cv2.remap() 函数进行柱面变换。最终的结果显示在了两个窗口中:原始图像窗口和柱面变换后的图像窗口。 需要注意的是,柱面变换只能纠正摄像机的水平垂直畸变,而无法纠正其它类型的畸变,比如径向畸变和切向畸变。如果需要纠正这些畸变,可以使用更高级的畸变纠正方法,比如 OpenCV 中的 cv2.undistort() 函数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值