dp:最大子序列和

Leetcode, MaximumSubarray

设状态为 f[j],表示以 S[j] 结尾的最大连续子序列和,则状态转移方程如下:
f[j] = max {f[j − 1] + S[j], S[j]} , 其中1 ≤ j ≤ n
target = max {f[j]} , 其中1 ≤ j ≤ n

解释如下:
• 情况一,S[j] 不独立,与前面的某些数组成一个连续子序列,则最大连续子序列和为
f[j − 1] + S[j]。
• 情况二,S[j] 独立划分成为一段,即连续子序列仅包含一个数 S[j],则最大连续子序列和为
S[j]。

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

//暴力法 时间复杂度O(n),空间复杂度O(1)
int mySolution( int arr[], int n )
{
	int max_sum = 0;
	for ( int i = 0; i < n; ++i )
	{
		int sum = 0;
		for (int j = i; j < n; ++j)
		{
			sum += arr[j];
			//比较从i开始的子序列
			max_sum = std::max(max_sum, sum);
		}
	}
	return max_sum;
}

//dp 时间复杂度O(n),空间复杂度O(1)
int solution(int arr[], int n)
{
	int res = INT_MIN, sum = 0;
	for ( int i = 0; i < n; ++i )
	{
		sum = std::max(sum + arr[i], arr[i]);
		res = std::max(res, sum);
	}
	return res;
}

int main()
{
	int arr[] = {-2, 1, -3, 4, -1, 2, 1, -5, 5};
	int arr1[] = { 1 };
	int arr2[] = { 0 };
	int arr3[] = { -1 };
	int arr4[] = { -100000 };
	cout << solution(arr, 9) << endl;	//6
	cout << solution(arr1, 1) << endl;	//1
	cout << solution(arr2, 1) << endl;	//0
	cout << solution(arr3, 1) << endl;	//-1
	cout << solution(arr4, 1) << endl;	//-100000

	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值