kd树c++实现

#include <iostream>  
#include <algorithm>  
#include <cstdio>  
#include <cstring>  
#include <queue>  
using namespace std;//对输入的n个点组成的点集合,对于每次输入的点,求离输入点最近的k个点的位置。
#define LL long long int  
#define maxn 50080  
#define K 5  //空间最大维度。
int num,nownum,m;  
LL ans;  
struct kdNode  
{  
    LL x[K];   
    int div;  
    bool lef;  
}Ans[12];  
struct Node  
{  
    kdNode a;  
    LL dis;//表示和目标点的距离 这里采用的是欧式距离。
    bool operator < (const Node & a) const  
    {  
        return dis < a.dis;  
    }  
    Node(){}  
    Node(kdNode & tmp,LL d)  
    {  
        a = tmp;  
        dis = d;  
    }  
};  
int cmpNo; //排序时的维度 
bool cmp(kdNode a,kdNode b)  
{  
    return a.x[cmpNo] < b.x[cmpNo];  
}  
  
inline LL max(LL a,LL b)  
{  
    return a>b?a:b;  
}  
kdNode p[maxn],q;  
  
LL dis(kdNode a,kdNode b,int k)  
{  
    LL res = 0;  
    for(int i = 0;i < k;i++)  
        res += (a.x[i] - b.x[i])*(a.x[i] - b.x[i]);  
    return res;  
}  
  
priority_queue <Node> qq;  
void buildKD(int l,int r,kdNode * p,int d,int k)  
{  
    if(l > r)    return;  
    int m = (l+r) >> 1;  
    cmpNo = d;  
    nth_element(p+l,p+m,p+r+1,cmp);  
    p[m].div = d;  
    if(l == r)      
    {  
        p[m].lef = 1;  
        return;  
    }  
    buildKD(l,m-1,p,(d+1)%k,k);  
    buildKD(m+1,r,p,(d+1)%k,k);  
}  
  
void findKD(int l,int r,kdNode & tar,kdNode * p,int k)  
{  
    if(l>r)    return;  
    int m = (l+r) >> 1;  
    LL d = dis(p[m],tar,k);  
    if(p[m].lef)//如果是叶子  
    {  
        if(nownum < num)      
        {  
            nownum++;  
            ans = max(ans,d);  
            qq.push(Node(p[m],d));  
        }  
        else if(ans > d)  
        {  
            qq.pop();  
            qq.push(Node(p[m],d));  
            ans = qq.top().dis;  
        }  
        return;  
    }  
    LL t = tar.x[p[m].div] - p[m].x[p[m].div];  
    if(t > 0)  
    {  
        findKD(m+1,r,tar,p,k);  
        if(nownum < num)  
        {  
            qq.push(Node(p[m],d));  
            nownum++;  
            ans = qq.top().dis;  
            findKD(l,m-1,tar,p,k);  
        }  
        else   
        {      
            if(ans > d)  
            {  
                qq.pop();  
                qq.push(Node(p[m],d));  
                ans = qq.top().dis;  
            }  
            if(ans > t*t)  
                findKD(l,m-1,tar,p,k);  
        }  
    }  
    else   
    {      
        findKD(l,m-1,tar,p,k);  
        if(nownum < num)  
        {  
            qq.push(Node(p[m],d));  
            nownum++;  
            ans = qq.top().dis;  
            findKD(m+1,r,tar,p,k);  
        }  
        else  
        {  
            if(ans > d)  
            {  
                qq.pop();  
                qq.push(Node(p[m],d));  
                ans = qq.top().dis;  
            }  
            if (ans > t*t)  
                findKD(m+1,r,tar,p,k);  
        }  
  
    }  
}  
  
int main()  
{  
    //freopen("in.txt","r",stdin);  
    int n,k;// k为空间维度, n为点集。
    while(scanf("%d%d",&n,&k)==2)  
    {  
        for(int i = 0;i < n;i++)  
        {  
            for(int j = 0;j < k;j++)  
            {  
                scanf("%I64d",&p[i].x[j]);  
            }  
            p[i].lef = 0;  
        }  
        int t;  
        scanf("%d",&t);  //t次操作。
        buildKD(0,n-1,p,k-1,k);  
        for(int i = 1;i <= t;i++)  
        {  
            ans = -1;  
            nownum = 0;  
            for(int j = 0;j < k;j++)  
                scanf("%lld",&q.x[j]);  
            while(!qq.empty())        qq.pop();  
            scanf("%d",&num);  //最近的num个点。
            findKD(0,n-1,q,p,k);  
            for(int j = 1;j <= num;j++)  
            {  
                Ans[j] = qq.top().a;  
                qq.pop();  
            }  
            printf("the closest %d points are:\n",num);  
            for(int j = num;j >= 1;j--)  
            {  
                for(int kk = 0;kk < k;kk++)  
                {  
                    if(kk == 0)  
                        printf("%lld",Ans[j].x[kk]);  
                    else printf(" %lld",Ans[j].x[kk]);  
                }  
                puts("");  
            }  
        }  
    }  
    return 0;  
}  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值