Problem Description
上次Gardon的迷宫城堡小希玩了很久(见Problem B),现在她也想设计一个迷宫让Gardon来走。但是她设计迷宫的思路不一样,首先她认为所有的通道都应该是双向连通的,就是说如果有一个通道连通了房间A和B,那么既可以通过它从房间A走到房间B,也可以通过它从房间B走到房间A,为了提高难度,小希希望任意两个房间有且仅有一条路径可以相通(除非走了回头路)。小希现在把她的设计图给你,让你帮忙判断她的设计图是否符合她的设计思路。比如下面的例子,前两个是符合条件的,但是最后一个却有两种方法从5到达8。
Input
输入包含多组数据,每组数据是一个以0 0结尾的整数对列表,表示了一条通道连接的两个房间的编号。房间的编号至少为1,且不超过100000。每两组数据之间有一个空行。
整个文件以两个-1结尾。
整个文件以两个-1结尾。
Output
对于输入的每一组数据,输出仅包括一行。如果该迷宫符合小希的思路,那么输出"Yes",否则输出"No"。
Sample Input
6 8 5 3 5 2 6 4 5 6 0 0 8 1 7 3 6 2 8 9 7 5 7 4 7 8 7 6 0 0 3 8 6 8 6 4 5 3 5 6 5 2 0 0 -1 -1
Sample Output
Yes Yes No
思路:注意是否有环,以及联通的房间有几个集合(也就是你的输入中,有几棵树),有环或者不止一个集合即为No,其余Yes;
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int pre[100000+10],flag[100000+10];
int find(int x)//模板;
{
int r=x;
while(r!=pre[r])
r=pre[r];
int i=x,j;
while(i!=r)
{
j=pre[i];
pre[i]=r;
i=j;
}
return r;
}
int main()
{
int m,n,i;
while(scanf("%d %d",&m,&n)!=EOF)
{
if(m==-1 && n==-1) break;
if(m==0 && n==0)//看了大牛的博客才知道这组坑,wu wu..;
{
printf("Yes\n");
continue;
}
for(i=1;i<=100000;i++)
pre[i]=i;
bool ans=true;//标记是否有环;
memset(flag,0,sizeof(flag));
flag[m]=1,flag[n]=1;//标记为真值,也就是m,n在输入中出现了;
pre[min(m,n)]=max(m,n);//比起pre[m]=n,省时12 ms;
while(scanf("%d %d",&m,&n) && (m+n))
{
int fx=find(m);
int fy=find(n);
flag[m]=1,flag[n]=1;//标记为真值,也就是m,n在输入中出现了;
if(fx==fy)
ans=false;//有环存在;
else
pre[min(fx,fy)]=max(fx,fy);//比起pre[m]=n,省时12 ms;
}
if(!ans) printf("No\n");
else if(ans)
{
int tot=0;
for(i=1;i<=100000;i++)
{
if(flag[i] && pre[i]==i)
tot++;
if(tot>1)//说明有两个集合;
{
printf("No\n");
break;
}
}
if(tot<2)
printf("Yes\n");
}
}
return 0;
}
换种描述方式;
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int pre[100010],flag[100010];
int find(int x)
{
if(pre[x]==x) return x;
return pre[x]=find(pre[x]);
}
int main()
{
int m,n,p=1;
while(p>0)
{
for(int i=1;i<=100010;i++)
pre[i]=i;
memset(flag,0,sizeof(flag));
bool ans=true;
while(scanf("%d %d",&m,&n) && (m+n))
{
if(m==-1) return 0;
flag[m]=flag[n]=1;
int fx=find(m);
int fy=find(n);
if(pre[fx]!=pre[fy])
pre[fy]=fx;
else ans=false;
}
int tot=0;
for(int i=1;i<=100001;i++)
{
if(flag[i] && find(i)==i)
{
tot++;
if(tot>1)
{
ans=false;
break;
}
}
}
if(!ans) printf("No\n");
else printf("Yes\n");
}
return 0;
}