Description
Bessie wants to navigate her spaceship through a dangerous asteroid field in the shape of an N x N grid (1 <= N <= 500). The grid contains K asteroids (1 <= K <= 10,000), which are conveniently located at the lattice points of the grid.
Fortunately, Bessie has a powerful weapon that can vaporize all the asteroids in any given row or column of the grid with a single shot.This weapon is quite expensive, so she wishes to use it sparingly.Given the location of all the asteroids in the field, find the minimum number of shots Bessie needs to fire to eliminate all of the asteroids.
Input
* Line 1: Two integers N and K, separated by a single space.
* Lines 2..K+1: Each line contains two space-separated integers R and C (1 <= R, C <= N) denoting the row and column coordinates of an asteroid, respectively.
Output
* Line 1: The integer representing the minimum number of times Bessie must shoot.
Sample Input
3 4
1 1
1 3
2 2
3 2
Sample Output
2
Hint
INPUT DETAILS:
The following diagram represents the data, where “X” is an asteroid and “.” is empty space:
X.X
.X.
.X.
题意:给你一个二维网格和一些点,一个操作可以消除一行或一列,问最少用多少次操作是所有点消除。
分析:
单点建图的话,好像很麻烦,行与列之间相互影响。把行或列看成点,分成行列两个集合,二分图最大匹配求最小点覆盖。源点连向行权值为1,行连向与其影响的列权值为1,列连向汇点权值为1,最大流即为最小操作。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
typedef long long LL;
using namespace std;
const int MAXN = 5e3 + 5;
const int INF = 0x3f3f3f3f;
int head[MAXN], dist[MAXN], vis[MAXN];
int cur[MAXN];
int top = 0;
struct Edge {
int to, cap, flow, next;
}edge[MAXN * 100];
void init() {
top = 0;
memset(head, -1, sizeof(head));
memset(vis, 0, sizeof(vis));
}
void addedge(int a, int b, int c) {
Edge E1 = {b, c, 0, head[a]};
edge[top] = E1;
head[a] = top++;
Edge E2 = {a, 0, 0, head[b]};
edge[top] = E2;
head[b] = top++;
}
bool BFS(int st, int ed) {
memset(dist, -1, sizeof(dist));
memset(vis, 0, sizeof(vis));
queue<int> que;
que.push(st);
vis[st] = 1;
dist[st] = 0;
while(!que.empty()) {
int u = que.front();
que.pop();
for(int i = head[u]; i != -1; i = edge[i].next) {
Edge E = edge[i];
if(!vis[E.to] && E.cap > E.flow) {
dist[E.to] = dist[u] + 1;
vis[E.to] = 1;
if(E.to == ed) return true;
que.push(E.to);
}
}
}
return false;
}
int DFS(int x, int a, int ed) {
if(x == ed || a == 0) return a;
int flow = 0, f;
for(int& i = cur[x]; i != -1; i = edge[i].next) {
Edge& E = edge[i];
if(dist[E.to] == dist[x] + 1 && (f = DFS(E.to, min(a, E.cap - E.flow), ed)) > 0) {
E.flow += f;
edge[i^1].flow -= f;
flow += f;
a -= f;
if(a == 0) break;
}
}
return flow;
}
int Maxflow(int st, int ed) {
int flow = 0;
while(BFS(st, ed)) {
memcpy(cur, head, sizeof(head));
flow += DFS(st, INF, ed);
}
return flow;
}
int main()
{
int n, m; init();
scanf("%d %d", &n, &m);
for(int i = 1; i <= n; ++i) {
addedge(0, i, 1);
addedge(i + n, n + n + 1, 1);
}
while(m--) {
int a, b;
scanf("%d %d", &a, &b);
addedge(a, n + b, 1);
}
int ans = Maxflow(0, n + n + 1);
printf("%d\n", ans);
return 0;
}