hihocoder #1142 : 三分求极值【三分】

在这里插入图片描述

分析:【三分】
三分最近距离的 ( x x , y y ) (xx,yy) (xx,yy)中的xx,画图可知,对于P到曲线上任一点 ( x , y ) (x,y) (x,y),并不是单峰问题。当 − I N F &lt; x x &lt; = − b / 2 a -INF &lt; xx &lt;= -b / 2a INF<xx<=b/2a,对于P点到该曲线距离满足三分,同理 − b / 2 a &lt; = x x &lt; I N F -b / 2a &lt;= xx &lt; INF b/2a<=xx<INF亦满足。

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
typedef pair<int, int> pii;
const int mod = 1e9 + 7;
const int INF = 0x3f3f3f3f;
const int MAXN = 1e4 + 10;
double eps = 0.000001;
double a, b, c, x, y;

double so(double xx) {
    double yy = a * xx * xx + b * xx + c;
    return (xx - x) * (xx - x) + (yy - y) * (yy - y);
}

int main() {
    scanf("%lf %lf %lf %lf %lf", &a, &b, &c, &x, &y);
    if(a == 0.0) {
        printf("%.3lf\n", fabs((b * x - y + c) / sqrt(b * b + 1.0)));
        return 0;
    }
    double L = -10000000.0, R = -b / (a + a);
    while(R - L >= eps) {
        double mid1 = L + (R - L) / 3;
        double mid2 = R - (R - L) / 3;
        if(so(mid1) >= so(mid2)) L = mid1;
        else R = mid2;
    }
    double ans = sqrt(so(R));
    L = -b / (a + a), R = 10000000.0;
    while(R - L >= eps) {
        double mid1 = L + (R - L) / 3;
        double mid2 = R - (R - L) / 3;
        if(so(mid1) >= so(mid2)) L = mid1;
        else R = mid2;
    }
    printf("%.3lf\n", min(sqrt(so(R)), ans));
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值