第二章感知机
引言:感知机是二分类的线性分类模型,输入为实例的特征向量,输出为实例的类别,属于判别模型。感知机旨在求出将训练数据进行线性划分的分离超平面,因此,导入基于误分类的损失函数,利用梯度下降法对损失函数进行极小化,求得感知模型。感知机预测就是用学习到的感知机模型对新的输入实例进行分类。
2.1感知机模型
(2.1) 感知机
和b为模型参数,在训练过程中进行更新。例如,和b就像构成了一个分离超平面将两个不是同一个类别的数据分离开。
2.2感知机学习策略
如果一个数据存在和b构成的模型将数据分成两类,那么就将数据集称为线性可分数据集,否则就称为线性不可分数据集。
在寻找和b过程中,需要定义一个损失函数,并将这个损失函数不断最小,取最好的结果=和b的最有解。
损失函数定义为误分类点到超平面的总距离,于是得到下面任一点到超平面的距离:
是L2范数
L2范数 https://blog.csdn.net/a493823882/article/details/80569888(参考)
最后得到关于2.1的损失函数
2.2
2.2式在有误分类是参数和b的线性函数,正确分类是0,所以该函数是连续可导函数。
也就是在训练过程中得到使L函数最小的和b的值。
2.3感知机学习算法
min 2.3
感知机学习算法是误分类驱动的,采用随机梯度下降算法。
具体是,1)随机选取初值和b
2)利用随机梯度下降算法不断让L变小(针对某一个误分类的点)
3)不断循环第二个步骤,直到全部误分类的点全部归为正确的