统计学习方法第一天

第二章感知机

引言:感知机是二分类的线性分类模型,输入为实例的特征向量,输出为实例的类别,属于判别模型。感知机旨在求出将训练数据进行线性划分的分离超平面,因此,导入基于误分类的损失函数,利用梯度下降法对损失函数进行极小化,求得感知模型。感知机预测就是用学习到的感知机模型对新的输入实例进行分类。

2.1感知机模型

f(x)=sign(\omega x+b)            (2.1)     感知机

\omega和b为模型参数,在训练过程中进行更新。例如,\omega和b就像构成了一个分离超平面将两个不是同一个类别的数据分离开。

2.2感知机学习策略

如果一个数据存在\omega和b构成的模型将数据分成两类,那么就将数据集称为线性可分数据集,否则就称为线性不可分数据集。

在寻找\omega和b过程中,需要定义一个损失函数,并将这个损失函数不断最小,取最好的结果=\omega和b的最有解。

损失函数定义为误分类点到超平面的总距离,于是得到下面任一点到超平面的距离:

1/\left \| \omega \right \|\left | \omega x_{0}+b\right | 

\left \| \omega \right \|是L2范数

L2范数    https://blog.csdn.net/a493823882/article/details/80569888(参考)

最后得到关于2.1的损失函数

L\left ( \omega ,b \right )=-\sum y_{i}\left ( \omega x_{i}+b \right )                            2.2

2.2式在有误分类是参数\omega和b的线性函数,正确分类是0,所以该函数是连续可导函数。

也就是在训练过程中得到使L函数最小的\omega和b的值。

2.3感知机学习算法

minL\left ( \omega ,b \right )=-\sum y_{i}\left ( \omega x_{i}+b \right )                     2.3

感知机学习算法是误分类驱动的,采用随机梯度下降算法。

具体是,1)随机选取初值\omega和b

               2)利用随机梯度下降算法不断让L变小(针对某一个误分类的点)

               3)不断循环第二个步骤,直到全部误分类的点全部归为正确的

 

                    

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值