范数(norm) 几种范数的简单介绍

什么是范数?

我们知道距离的定义是一个宽泛的概念,只要满足非负、自反、三角不等式就可以称之为距离。范数是一种强化了的距离概念,它在定义上比距离多了一条数乘的运算法则。有时候为了便于理解,我们可以把范数当作距离来理解。

在数学上,范数包括向量范数和矩阵范数,向量范数表征向量空间中向量的大小,矩阵范数表征矩阵引起变化的大小。一种非严密的解释就是,对应向量范数,向量空间中的向量都是有大小的,这个大小如何度量,就是用范数来度量的,不同的范数都可以来度量这个大小,就好比米和尺都可以来度量远近一样;对于矩阵范数,学过线性代数,我们知道,通过运算AX=B,可以将向量X变化为B,矩阵范数就是来度量这个变化大小的。

这里简单地介绍以下几种向量范数的定义和含义 
1、 L-P范数 
与闵可夫斯基距离的定义一样,L-P范数不是一个范数,而是一组范数,其定义如下: 




根据P 的变化,范数也有着不同的变化,一个经典的有关P范数的变化图如下: 
这里写图片描述  
上图表示了p从无穷到0变化时,三维空间中到原点的距离(范数)为1的点构成的图形的变化情况。以常见的L-2范数(p=2)为例,此时的范数也即欧氏距离,空间中到原点的欧氏距离为1的点构成了一个球面。

实际上,在0p<1≤p<1时,Lp并不满足三角不等式的性质,也就不是严格意义下的范数。以p=0.5,二维坐标(1,4)、(4,1)、(1,9)为例,。因此这里的L-P范数只是一个概念上的宽泛说法。

2、L0范数 

当P=0时,也就是L0范数,由上面可知,L0范数并不是一个真正的范数,它主要被用来度量向量中非零元素的个数。用上面的L-P定义可以得到的L-0的定义为: 


这里就有点问题了,我们知道非零元素的零次方为1,但零的零次方,非零数开零次方都是什么鬼,很不好说明L0的意义,所以在通常情况下,大家都用的是: 

表示向量 x 中非零元素的个数。

对于L0范数,其优化问题为: 


s.t. Ax=b 
在实际应用中,由于L0范数本身不容易有一个好的数学表示形式,给出上面问题的形式化表示是一个很难的问题,故被人认为是一个NP难问题。所以在实际情况中,L0的最优问题会被放宽到L1或L2下的最优化。

3、L1范数 
L1范数是我们经常见到的一种范数,它的定义如下: 



表示向量 x 中非零元素的绝对值之和。

L1范数有很多的名字,例如我们熟悉的曼哈顿距离、最小绝对误差等。使用L1范数可以度量两个向量间的差异,如绝对误差和(Sum of Absolute Difference): 

对于L1范数,它的优化问题如下: 



由于L1范数的天然性质,对L1优化的解是一个稀疏解,因此L1范数也被叫做稀疏规则算子。通过L1可以实现特征的稀疏,去掉一些没有信息的特征,例如在对用户的电影爱好做分类的时候,用户有100个特征,可能只有十几个特征是对分类有用的,大部分特征如身高体重等可能都是无用的,利用L1范数就可以过滤掉。

4、L2范数 
L2范数是我们最常见最常用的范数了,我们用的最多的度量距离欧氏距离就是一种L2范数,它的定义如下: 



表示向量元素的平方和再开平方。 
像L1范数一样,L2也可以度量两个向量间的差异,如平方差和(Sum of Squared Difference): 

对于L2范数,它的优化问题如下: 


L2范数通常会被用来做优化目标函数的正则化项,防止模型为了迎合训练集而过于复杂造成过拟合的情况,从而提高模型的泛化能力。


5、范数

时,也就是范数,它主要被用来度量向量元素的最大值,与L0一样,通常情况下表示为 


来表示

### 腾讯云 DeepSeek 集成使用指南 腾讯云 TI 平台为用户提供了一个便捷的方式来进行 DeepSeek-R1 大模型的私有化部署和调用。通过该平台,用户不仅可以获得免费体验的机会,还能享受到开放的 API 接口服务,便于将此先进的人工智能技术融入自身的业务环境中[^2]。 #### 获取访问权限 为了开始集成工作,首先需要注册并登录到腾讯云账户,在 TI 平台上申请获取 DeepSeek 的使用权以及相应的开发工具包 (SDK) 和 API 文档链接。 #### 准备环境配置 确保本地开发环境已经安装 Python 解释器及相关依赖库,并按照官方给出的操作手册完成必要的设置步骤,比如创建虚拟环境、激活许可证等操作。 #### 实现接口对接 下面是一个简单的 Python 代码片段用于展示如何调用 DeepSeek 提供的服务: ```python import requests def call_deepseek_api(text_input): url = "https://api.tencentcloud.com/deepseek" headers = { 'Content-Type': 'application/json', 'Authorization': 'Bearer YOUR_ACCESS_TOKEN' } payload = {"text": text_input} response = requests.post(url, json=payload, headers=headers) if response.status_code == 200: result = response.json() return result['output'] else: raise Exception(f"Error calling API: {response.text}") ``` 上述函数 `call_deepseek_api` 可以用来发送请求给远程服务器处理输入文本数据,并返回经过分析后的结果字符串。需要注意的是这里的 URL 地址应当替换成为实际使用的端点地址;同样地,“YOUR_ACCESS_TOKEN”也需要替换成有效的认证令牌。 对于更加全面的学习资料和技术支持,建议参考 LangChain 官方文档以及其他在线资源如 GitBook 或 GitHub 上关于 LangChain 的教程和案例研究,这些都将极大地促进开发者们更好地理解和运用这项强大的自然语言处理能力[^1]。
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值