Codeforces Round #505 B Weakened Common Divisor

地址:http://codeforces.com/contest/1025/problem/B

做的时候还把a,b进行分解质因素,不需要,a*b后的值两个数的质因子均包括了,直接求gcd即可。。。。
先判断最后是否存在一个WCD数,利用(a[i] * b[i])之间求gcd,当最后得数为1时,说明不存在;否则,因为可能存在g还是a[i] * b[i]的情况,所以再和每个单独的a[i]或b[i]取个gcd

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int inf = 0x3f3f3f3f;
const int N = 150005;

#define fi first
#define se second

LL gcd(LL a,LL b)
{
    return (b == 0) ? a : gcd(b,a % b);
}

LL a[N],b[N];

int main()
{
    int n;
    scanf("%d",&n);
    scanf("%lld %lld",&a[0],&b[0]);
    LL g = a[0] * b[0];
    for(int i = 1;i < n;++i)
    {
        scanf("%lld %lld",&a[i],&b[i]);
        g = gcd(g,a[i] * b[i]);
    }
    if(g == 1){
        cout << "-1" << endl;
        return 0;
    }
    for(int i = 0;i < n;++i)
    {
        if(gcd(g,a[i]) != 1){
            g = gcd(g,a[i]);
        }
        else{
            g = gcd(g,b[i]);
        }
    }
    cout << g << endl;
    return 0;
}

第二种方法:
先得到第一个数的质因子
然后再依次判断该质因子是否可以成为WCD数,我也是这样想的,但是用了map写,超时了

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int inf = 0x3f3f3f3f;
const int N = 150005;

#define fi first
#define se second

LL a[N],b[N];
LL cnt[N];

int main()
{
    int n;
    scanf("%d",&n);
    for(int i = 0;i < n;++i)
    {
        scanf("%d %d",&a[i],&b[i]);
    }
    int tot = 0;
    LL x = a[0],y = b[0];
    for(int i = 2;i <= sqrt(x);++i)
    {
        if(x % i == 0) cnt[tot++] = i;
        while(x % i == 0) x /= i;
    }
    if(x > 1) cnt[tot++] = x;
    for(int i = 2;i <= sqrt(y);++i)
    {
        if(y % i == 0) cnt[tot++] = i;
        while(y % i == 0) y /= i;
    }
    if(y > 1) cnt[tot++] = y;
    for(int i = 0;i < tot;++i)
    {
        bool flag = false;
        for(int j = 1;j < n;++j){
            if(a[j] % cnt[i] != 0 && b[j] % cnt[i] != 0)
            {
                flag = true;
                break;
            }
        }
        if(!flag){
            printf("%lld\n",cnt[i]);
            return 0;
        }
    }
    printf("-1\n");
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值