题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1707
题意:给出n, m, k。表示n个点,其中m条边不能直接连通,求生成树个数。
Matrix-Tree定理的应用;
对于一个无向图G,它的生成树个数等于其Kirchhoff矩阵任何一个n-1阶主子式的行列式的绝对值
所谓n-1阶主子式,就是对于任意一个r,将C的第r行和第r列同时删去后的新矩阵,用Cr表示
Kirchhoff矩阵:对于无向图G,它的Kirchhoff矩阵C定义为它的度数矩阵D减去它的邻接矩阵A。
具体参考博客:https://www.cnblogs.com/zhenglier/p/10100660.html
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int inf = 0x3f3f3f3f;
#define mp make_pair
#define pb push_back
#define fi first
#define se second
const int MAXN = 55;
LL K[MAXN][MAXN],A[MAXN][MAXN];
LL determinant(int n)
{
LL res = 1;
//接下来利用行列式的性质将行列式化为三角行列式
for(int i = 1;i <= n;++i){
if(!K[i][i]){
bool flag = false;
for(int j = i + 1;j <= n;++j){
if(K[j][i]){
flag = true;
for(int k = i;k <= n;++k){
swap(K[i][k],K[j][k]);
}
res *= -1;
break;
}
}
if(!flag) return 0;
}
for(int j = i + 1;j <= n;++j){
while(K[j][i]){
LL t = K[i][i] / K[j][i];
for(int k = i;k <= n;++k){
K[i][k] = K[i][k] - t * K[j][k];
swap(K[i][k],K[j][k]);
}
res *= -1;
}
}
res *= K[i][i];
}
return res;
}
int main()
{
int n,m,k;
while(~scanf("%d %d %d",&n,&m,&k)){
memset(K,0,sizeof(K));
memset(A,0,sizeof(A));
for(int i = 1;i <= m;++i){
int a,b;
scanf("%d %d",&a,&b);
A[a][b] = A[b][a] = 1;
}
for(int i = 1;i <= n;++i){
for(int j = 1;j <= n;++j){
if(i != j && A[i][j] == 0){
K[i][i]++;
K[i][j]--;
}
}
}
n = n - 1;
LL ans = determinant(n);
printf("%lld\n",ans);
}
return 0;
}