生成树专题-------Organising the Organisation 生成树计数

题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1707

题意:给出n, m, k。表示n个点,其中m条边不能直接连通,求生成树个数。
Matrix-Tree定理的应用;
对于一个无向图G,它的生成树个数等于其Kirchhoff矩阵任何一个n-1阶主子式的行列式的绝对值
所谓n-1阶主子式,就是对于任意一个r,将C的第r行和第r列同时删去后的新矩阵,用Cr表示
Kirchhoff矩阵:对于无向图G,它的Kirchhoff矩阵C定义为它的度数矩阵D减去它的邻接矩阵A。
具体参考博客:https://www.cnblogs.com/zhenglier/p/10100660.html

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int inf = 0x3f3f3f3f;
#define mp make_pair
#define pb push_back
#define fi first
#define se second
const int MAXN = 55;

LL K[MAXN][MAXN],A[MAXN][MAXN];

LL determinant(int n)
{
    LL res = 1;
    //接下来利用行列式的性质将行列式化为三角行列式
    for(int i = 1;i <= n;++i){
        if(!K[i][i]){
            bool flag = false;
            for(int j = i + 1;j <= n;++j){
                if(K[j][i]){
                    flag = true;
                    for(int k = i;k <= n;++k){
                        swap(K[i][k],K[j][k]);
                    }
                   res *= -1;
                    break;
                }
            }
            if(!flag) return 0;
        }
        for(int j = i + 1;j <= n;++j){
            while(K[j][i]){
                LL t = K[i][i] / K[j][i];
                for(int k = i;k <= n;++k){
                    K[i][k] = K[i][k] - t * K[j][k];
                    swap(K[i][k],K[j][k]);
                }
                res *= -1;
            }
        }
        res *= K[i][i];
    }
    return res;
}

int main()
{
    int n,m,k;
    while(~scanf("%d %d %d",&n,&m,&k)){
        memset(K,0,sizeof(K));
        memset(A,0,sizeof(A));
        for(int i = 1;i <= m;++i){
            int a,b;
            scanf("%d %d",&a,&b);
            A[a][b] = A[b][a] = 1;
        }
        for(int i = 1;i <= n;++i){
            for(int j = 1;j <= n;++j){
                if(i != j && A[i][j] == 0){
                    K[i][i]++;
                    K[i][j]--;
                }
            }
        }
        n = n - 1;
        LL ans = determinant(n);
        printf("%lld\n",ans);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值