【今天聊聊生产力】提升研发生产力的神器推荐

本文介绍了几款提升开发效率的IDEA插件,包括用于DAO层和Mapper层跳转的FreeMybatisTool和MybatisX,代码简化工具Lombok,高速全局查询工具Everything,括号高亮插件RainbowBrackets,以及护眼软件和IDEA汉化插件,旨在帮助开发者提高工作效率并保护视力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

笔者 綦枫Maple 的其他作品,欢迎点击查阅哦~:
📚Jmeter性能测试大全:Jmeter性能测试大全系列教程!持续更新中!
📚UI自动化测试系列: Selenium+Java自动化测试系列教程❤
📚移动端自动化测试系列:Appium自动化测试系列教程

📚前言

今天呢我们就来讨论一下研发生产力!给大家推荐几个日常会使用到的神器!

1、🚀Free Mybatis Tool、MybatisX

用于DAO层和Mapper层之间跳转

Mapper和DAO层跳转,可以用的插件比较多,比较推荐如下两款,功能基本一致,只是样式小有差别。
Free Mybatis Tool,样式为一个绿色箭头,简洁明了,我更喜欢这个:
在这里插入图片描述
在这里插入图片描述

MybatisX,图标是一个小鸟,样式更新潮一些:
在这里插入图片描述

2、🚀Lombok

这个就不用我多说啦,应该是开发最常用的IDEA插件工具之一了,可以用来简化很多代码的编写。
在这里插入图片描述

3、🚀Everything(高速全局查询工具)

安装一个Everything,你就可以享受在电脑上飞速查找所有你想要的文件的快感。
它的查找速度是真的快,基本就是你输入搜索条件的瞬间就可以给你结果,用起来极其舒服。
在这里插入图片描述

4、🚀Rainbow Brackets

IDEA插件,安装后,可以将括号变成彩色,不同级别的括号会用不同的颜色进行标记,便于更快地找到哪些括号是一对,看起来也更加美观。
在这里插入图片描述

5、🚀护眼宝(护眼工具)

身为编码人员,最重要的当然是保护眼睛啦,所以我每台电脑上都会常备一个这个软件,开机自动启动,可以将屏幕色温调整到比较舒服的区间,不会那么刺眼。
还可以设置定时提醒闭眼休息,做眼保健操,对编码人员非常友好啦!
在这里插入图片描述

6、🚀IDEA汉化插件

IDEA默认语言为英文,用起来不是很方便,有些特殊的单词可能不太容易理解,那可以用这个插件把语言改成中文!更方便大家理解IDEA中的各个菜单和功能。
在这里插入图片描述
唯一的问题就是如果你用英文版用习惯了,在汉化完之后,想要在设置里搜某些项会觉得不太好搜(原本要搜英文,现在得搜对应的中文),需要习惯一下。用一阵就会发现中文版的方便啦。

✍结尾

妹妹听后点了点头,脸上露出了满意的笑容。她轻声说道:“原来如此,谢谢你,鸽鸽。看来我不仅要多读书,还要多动手实践并且提升自己才行。”

看着她那充满求知欲的眼神,我不禁感叹,学习之路虽然充满挑战,但有这样一位美丽聪慧的伙伴相伴,一切都变得格外有意义。快去实践一下吧!


👨‍🎓作者:綦枫Maple
🚀博客:CSDN、掘金等
🚀网易云:https://y.music.163.com/m/user?id=316706413
🚫特别声明:原创不易,转载请附上原文出处链接和本文声明,谢谢配合。
🙏版权声明:文章里可能部分文字或者图片来源于互联网或者百度百科,如有侵权请联系处理。
🀐其他:若有兴趣,可以加页面左侧的《Java自动化技术交流屋》探讨学习哦~
### NWD 损失函数的图表与可视化 对于YOLOv5中的`yolov5-NWD.py`文件,该文件实现了Wasserstein损失函数用于目标检测[^1]。然而,在提及NWD(假设为噪声到唤醒网络)时,并未找到直接关联于这种特定架构或方法下的损失函数图表或可视化的具体描述。 通常情况下,为了展示任何类型的损失函数的变化情况及其性能表现,可以采用如下几种常见的可视化方式: #### 1. 训练过程中的损失变化曲线图 通过记录训练过程中每轮迭代后的损失值,绘制出随着epoch增加而对应的平均损失下降趋势图。这有助于直观了解模型收敛速度以及是否存在过拟合等问题。 ```python import matplotlib.pyplot as plt def plot_loss_curve(epochs, losses): plt.figure(figsize=(8,6)) plt.plot(range(1, epochs+1), losses) plt.title('Training Loss Curve') plt.xlabel('Epochs') plt.ylabel('Loss Value') plt.grid(True) plt.show() ``` #### 2. 不同超参数设置下对比分析图 当调整某些关键性的超参数比如学习率、正则项系数等之后,可以通过多条不同颜色或者样式的折线来比较它们各自带来的影响效果差异。 #### 3. 测试集上预测结果分布直方图 除了关注整体上的数值指标外,还可以针对测试样本生成其真实标签预测得分之间的差距统计图形,以此评估模型泛化能力的好坏程度。 由于当前关于NWD的具体定义不够清晰,上述建议更多基于一般意义上的机器学习项目实践给出。如果确实存在名为"NWD"的独特技术方案,则可能需要查阅更专业的资料源获取针对性更强的信息。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

千川Maple

感谢你的投喂鸭~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值