问题描述
我们把一个数称为有趣的,当且仅当:
1. 它的数字只包含0, 1, 2, 3,且这四个数字都出现过至少一次。
2. 所有的0都出现在所有的1之前,而所有的2都出现在所有的3之前。
3. 最高位数字不为0。
因此,符合我们定义的最小的有趣的数是2013。除此以外,4位的有趣的数还有两个:2031和2301。
请计算恰好有n位的有趣的数的个数。由于答案可能非常大,只需要输出答案除以1000000007的余数。
输入格式
输入只有一行,包括恰好一个正整数n (4 ≤ n ≤ 1000)。
输出格式
输出只有一行,包括恰好n 位的整数中有趣的数的个数除以1000000007的余数。
样例输入
4
样例输出
3
数位dp,初始状态比较难想,需要初始化的状态太多。
错误:
1.数据维度太大,后面都蒙了到底应该是 哪个状态赋值为1,改了好几次。
2.赋初值的时候,尽量长度小点,否则很难。
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
#define rep(i,a,b) for(int i=a;i<b;++i)
#define bug() printf("****\n");
const int N=1010;
const int mod=1e9+7;
LL dp[N][2][2][2][2];
LL getAns(int len,int f0,int f1,int f2,int f3){
if(dp[len][f0][f1][f2][f3]!=-1)return dp[len][f0][f1][f2][f3];
// printf("***\n");
LL ans=0;
for(int i=0;i<4;i++){
if(f0+f1+f2+f3!=0&&i==0&&f1==0){
ans=(ans+getAns(len-1,1,f1,f2,f3))%mod;
}
if(i==1&&f0==1){
ans=(ans+getAns(len-1,f0,1,f2,f3))%mod;
// printf("ans:%lld\n",ans);
}
if(i==2&&f3==0){
ans=(ans+getAns(len-1,f0,f1,1,f3))%mod;
}
if(i==3&&f2==1){
ans=(ans+getAns(len-1,f0,f1,f2,1))%mod;
/// printf("ans:%lld\n",ans);
}
}
//printf("%d %d %d %d %d %lld\n",len,f0,f1,f2,f3,ans);
return dp[len][f0][f1][f2][f3]=ans;
}
vector<int> tmpNum;
void dfs(int now,int len){
if(now==len){
dp[1][tmpNum[0]][tmpNum[1]][tmpNum[2]][tmpNum[3]]=0;
return;
}
for(int i=0;i<2;i++){
tmpNum.push_back(i);
dfs(now+1,len);
tmpNum.pop_back();
}
}
int main(){
memset(dp,-1,sizeof(dp));
dfs(0,4);
// dp[1][1][?][1][?]=1;
dp[1][1][0][1][1]=dp[1][1][1][1][0]=1;
dp[1][1][1][1][1]=2;
int n;
while(scanf("%d",&n)==1){
printf("%lld\n",getAns(n,0,0,0,0));
}
return 0;
}