中文大模型评估数据集——C-Eval

C-EVAL是一个针对中文基础模型的多层级多学科评估套件,旨在测试模型在复杂推理和多领域知识方面的表现。与现有基准相比,C-EVAL覆盖更广泛的领域,包括更难的C-EVAL HARD子集,重点关注高级推理问题。数据来源谨慎处理,避免数据泄漏,主要来自模拟考试,以减少潜在问题。实验涉及多个大模型,结果显示模型规模和训练策略对性能有显著影响,尤其是对于需要高级推理能力的任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

### 如何在C-Eval评估中使用DeepSeek进行测试 为了在 C-Eval 评估中使用 DeepSeek 进行测试,需遵循特定流程以确保模型性能得到准确衡量。首先,在准备阶段,应基于已有数据集对 DeepSeek-V3-Base 模型实施微调操作[^1]。此过程中涉及的数据不仅限于冷启动数据,还包括写作、事实问答等多个领域的内容。 完成初步微调之后,进入强化学习环节。这一阶段旨在优化模型对于各种提示(prompt)的理解能力,使其能够更好地适应不同应用场景下的需求。随着强化学习逐渐趋于稳定,会通过拒绝采样等方式生成新的监督细调(SFT)数据,并据此再次训练模型直至获得最终版本——即被命名为 DeepSeek-R1 的检查点。 针对具体的 C-Eval 测试环境部署: #### 准备工作 确保已获取最新版的 DeepSeek-R1 或者更优的选择可能是精简后的 DeepSeek-R1-Distill 版本。后者由于体积较小而更适合资源受限条件下的快速部署与响应[^3]。 #### 部署指南 可以参照官方提供的说明文档来设置运行环境。特别是如果打算利用 vLLM 工具链,则可按照如下命令行指令轻松启动服务: ```bash vllm serve --model deepseek-r1-distill ``` #### 执行评测 一旦服务器端配置完毕,即可着手编写客户端脚本来提交待测问题给到远程 API 接口处处理。注意要严格按照 C-Eval 定义的标准格式构造请求体,以便能正确解析返回的结果用于后续分析比较。 ```json { "prompt": "请解释什么是人工智能?", "max_tokens": 50, "temperature": 0.7 } ``` 上述 JSON 结构展示了向 DeepSeek 发送查询时所需的关键参数设定。其中 `prompt` 字段代表输入文本;`max_tokens` 控制输出长度上限;至于 `temperature` 则影响着生成内容创造性的高低程度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

华师数据学院·王嘉宁

$感谢支持$

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值