论文解读:PRINCE: Prefix-Masked Decoding for Knowledge Enhanced Sequence-to-Sequence Pre-Training

PRINCE是一种新的预训练方法,它通过在解码过程中使用噪声前缀来增强模型的知识学习能力。这种方法针对的是现有模型在知识生成上的局限性,尤其是在解码实体时过于依赖已生成的部分。通过在预测实体时部分遮蔽先前的token,模型需要仅依赖上下文信息来预测完整实体,从而提高其理解和生成知识的能力。实验表明,这种方法在生成实体方面表现出色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文解读:PRINCE: Prefix-Masked Decoding for Knowledge Enhanced Sequence-to-Sequence Pre-Training

image.png
Paper:https://aclanthology.org/2022.emnlp-main.171.pdf
Github:https://github.com/xu-song/prince

一、动机

  • 现有的预训练模型之所以可以获得不错的效果,得益于denoising autoencoder pre-training任务,即根据含有噪声(例如mask)的句子进行重建;
  • 现有的工作大多数关注denoising encoder,而denoising decoder关注的不是很多;
  • 一种简单的knowledge-enhance decoder的做法是输入一个含有mask token的文本,直接依次生成实体的token即可。然而这种做法很难说明模型已经掌握了事实知识。例如当要预测New york时,如果前一个词是New,那么模型会偏向于输出York,而并非是基于一个具体的事实来生成的。
  • 因此本文认为在做knowledge-enhanced decoding时,在预测过程中预测York时,New也要被Mask。

we propose PRefIx-masked decoding for kNowledge enhanCEd sequence-to- sequence pre-training (PRINCE), which decodes entity tokens with noisy prefixes rather than ground-truth tokens. For example, when predicting “York”, a mask symbol is fed into the decoder as the prefix, in place of “New”.

二、方法

自回归式的重建任务定义如下:
给定一个序列 x = { x 1 , x 2 , ⋯   , x s } \mathbf{x}=\{x_1, x_2, \cdots, x_s\} x={x1,x2,,xs},对区间 [ p , q ] [p, q] [p,q]内的token替换为mask。masked seq2seq预训练任务的优化目标为:
image.png
本文提出的方法如下图(b):
image.png
在decoding阶段,如果在预测实体时,预测当前的token时,不再是输入真实的预测token,而是mask。

简单来说,就是当模型在decoding阶段时,当预测第t个位置的token时,对t-1以及之前的某些token替换为mask,相当于模型在含有mask的prefix text来进行预测。
当解码器预测实体标记时,噪声被注入,并且先前生成的部分实体标记对于后者是看不到的。在这种情况下,解码器需要在没有实体本身任何线索的情况下预测完整的实体标记,这可以激励模型更好地学习仅依赖于上下文来预测实体。

三、实验

模型选择Encoder-Decoder架构。预训练预料为Wikipedia,且饱含aligned的实体。数据规模为14GB。
预训练时平均30%的token被选中。
Fine-tuning时,在WebNLG、Wikibo数据集上训练。
实验结果:
image.pngimage.png
提出的模型是否能够很好地生成实体呢?为了测试这个性能,邀请3个标注人员从reliability和faithfulness两个角度,对随机抽取的100个测试样本进行评估,得分如下所示,说明提出的方法很有效:
image.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

华师数据学院·王嘉宁

$感谢支持$

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值