Hadoop -- MapReduce案例WordCount代码与分析

最近在学Hadoop,自己敲了一下MapReduce的经典案例程序WordCount
发现十分的模板化,写maper进行数据处理,reduce进行分析,然后再模板化的进行设置。
自己做一个记录,大家遇到什么问题可以和我讨论,自己遇到了会给大家分享经验的~

环境:

1、搭建Hadoop集群环境
自己是用VM 虚拟了三个Centos7的机器做的集群,但是调试mr程序是在本地win10下也稍微配置了一下环境,让自己的mr程序可以在本地运行起来(这里大家可以搜搜win10上搭建hadoop环境进行本地调试)
2、编译环境:
我用的Maven进行的代码管理,eclipse jee版本进行的实验,Maven真是太好用了,导包就考它了!!再也不担心依赖了,java版本1.8

开干

统计文本中每个单词的数量
例如:
1.txt文件:

hadoop hadoop hello hello world 
java java java
ha ha ha ha 

2.txt文件:

c c c java java php php js
c++ c++ c++ 

统计出每一个单词出现的次数

1、建立新的Maven工程

Maven工程需要修改一下pom.xml文件对项目进行管理
以下是我的一个pom.xml配置信息

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
  <modelVersion>4.0.0</modelVersion>
  <groupId>com.josgu</groupId>
  <artifactId>WordCount</artifactId>
  <version>0.0.1-SNAPSHOT</version>
  	<dependencies>
		<dependency>
			<groupId>org.apache.hadoop</groupId>
			<artifactId>hadoop-common</artifactId>
			<version>2.8.5</version>
		</dependency>
		<dependency>
			<groupId>org.apache.hadoop</groupId>
			<artifactId>hadoop-hdfs</artifactId>
			<version>2.8.5</version>
		</dependency>
		<dependency>
			<groupId>org.apache.hadoop</groupId>
			<artifactId>hadoop-client</artifactId>
			<version>2.8.5</version>
		</dependency>
		<dependency>
			<groupId>jdk.tools</groupId>
			<artifactId>jdk.tools</artifactId>
			<version>1.8</version>
			<scope>system</scope>
			<systemPath>${JAVA_HOME}/lib/tools.jar</systemPath>
		</dependency>
		
		<dependency> 
			<groupId>junit</groupId>
			<artifactId>junit</artifactId>
			<version>4.12</version>
			<scope>test</scope>
		</dependency>
		
		<dependency>
			<groupId>org.apache.mrunit</groupId>
			<artifactId>mrunit</artifactId>
			<version>1.0.0</version>
			<scope>test</scope>
			<classifier>hadoop2</classifier>
		</dependency>

	</dependencies>
	
</project>

大家要找自己需要的依赖可以在这个网站进行查找
mavenrepository

2、写WordCountMapper

先贴代码:

package com.josgu.hadoop.mr;

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {

	@Override
	protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context)
			throws IOException, InterruptedException {
		// TODO Auto-generated method stub
		// super.map(key, value, context);
		String line = value.toString();

		String[] words = line.split(" ");

		for (String word : words) {
			context.write(new Text(word), new IntWritable(1));
		}
	}
}

写WordCountMapper其实就是通过继承将Mapper类中的map函数进行重写
需要注意的是

<LongWritable, Text, Text, IntWritable>
LongWritable, Text是一对,LongWritable是Key ,Text是Value,是从文件读出的数据
可以理解位Key是文本的行号,Value是文本中的一行
Text, IntWritable是一对, Text是Key, IntWritable是Value,是我们要往Reduce传入的数据
可以理解问Key是每一个单词,Value是单词的次数1

其次就是对数据的处理,就是用java对字符串进行操作

	String line = value.toString();

	String[] words = line.split(" ");

	for (String word : words) {
		context.write(new Text(word), new IntWritable(1));//将数据传给Reduce
	}

数据从文本到Mapper再到Reduce的形式是键值对的形式,即key — value

3、写WordCountReducer

先贴代码:

package com.josgu.hadoop.mr;

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable>{
	@Override
	protected void reduce(Text key, Iterable<IntWritable> values,
			Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {
		// TODO Auto-generated method stub
		//super.reduce(arg0, arg1, arg2);
		int count = 0;
		
		for (IntWritable value: values) {
			count += value.get();
		}
		context.write(key, new IntWritable(count));
	}
}

写WordCountReducer其实就是通过继承将Reducer类中的reduce函数进行重写
需要注意的是也是

<Text, IntWritable, Text, IntWritable>
其实根据上一个的讲解,可以自行进行理解这个数据键值对的写法

然后通过java对数据进行处理

int count = 0;
for (IntWritable value: values) {
	count += value.get();
}
context.write(key, new IntWritable(count));//得出结果进行传递 即单词---单词出现次数
写WordCountDriver

这次先说,WordCountDriver函数是作为程序的入口的,需要写main函数,并且做相关的设置
可以说是非常的模板化辣
代码:

package com.josgu.hadoop.mr;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCountDriver {
	public static void main(String[] args) throws Exception{
		Configuration conf = new Configuration(); //理解为一个信息配置的东西,任何作用的配置信息必须通过Configuration传递
		
		Job job = Job.getInstance(conf); //利用默认的配置信息创建一个job
		
		job.setJarByClass(WordCountDriver.class); //设置主函数入口
		
		job.setMapperClass(WordCountMapper.class);//设置我们的Mapper
		job.setReducerClass(WordCountReducer.class);//设置我们的Reducer
		
		job.setMapOutputKeyClass(Text.class);//Mapper输出数据的Key的类型
		job.setMapOutputValueClass(IntWritable.class);//Mapper输出数据的Value的类型
		
		job.setOutputKeyClass(Text.class);//输出结果的Key的类型
		job.setOutputValueClass(IntWritable.class);输出结果的Value的类型
		
		//job.setNumReduceTasks(1);//将结果输出到几个文件中,默认是1个
		
		/*
		由于自己想在本地进行实验,调试,所以在本地配置了hadoop环境,不然会报错,提示缺少插件,大家可以自行百度解决
		*/
		FileInputFormat.setInputPaths(job, "C:\\Users\\Jos\\Desktop\\wordcount\\input"); //job读取文件的路径
		FileOutputFormat.setOutputPath(job, new Path("C:\\Users\\Jos\\Desktop\\wordcount\\output"));//job结果输出的路径
		
		
		boolean b = job.waitForCompletion(true); //判断程序是否结束
		System.exit(b?0:1);//结束就程序结束
		
	}
}
结果

在output中生成了四个文件 .crc是进行校验的文件,_SUCCESS表示成功,数据在part-r-00000中
在这里插入图片描述
数据如图示:
在这里插入图片描述
再点一次运行会提示已存在,可以删除文件再执行
也可以在WordCountDriver中在new完conf后 加入:

Path outputPath = new Path("C:\\Users\\Jos\\Desktop\\WordCount\\output");
FileSystem fileSystem = FileSystem.get(conf); 
if(fileSystem.exists(outputPath)) {
	fileSystem.delete(outputPath, true);
	System.out.println("Output file has been existed, and will be deleted!");
}

错误

总结:

这个过程还是比较模板化的,但是我们可以通过自己建立对象,对自己的数据进行封装可以对更多数据进行更多操作,我们一次mr出来的数据可以再进行mr处理,二次处理得到我们想要的结果。

最后…如果大家在这个案例中遇到什么问题可以给我留言,可以和大家交流交流,如果自己遇到了一定给予帮助,自己写的时候,搭环境,遇到许多小问题,自己也是和别人讨论,搜索问题最后完成了这个案例,还是不错哒!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值