自反对称闭包

#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include<time.h>

#define M 4
#define N 4

int main(void)
{
	int i=0,j=0;
	int a[M][N]={{0}};

	srand(time(NULL));

	for(i=0;i<M;i++)
	{
		for(j=0;j<N;j++)
		{
			a[i][j]=rand()%2;
		}
	}
	printf("原矩阵是: \n");
	for (i=0;i<M;i++)
	{
		for(j=0;j<N;j++)
		{ 
			printf("%d\t",a[i][j]);
		}
		printf("\n");
	}
	printf("\n");
	
	printf("自反:\n");
	int t=0;
	for(i=0;i<M;i++)
	{
		for(j=0;j<N;j++)
		{ 
			if((i==j)&&!(a[i][j]))
			printf("%d\t",!(a[i][j]));
			else
			printf("%d\t",a[i][j]);
		}
		printf("\n");
	}
	printf("\n");

printf("对称:\n");
for(i=0;i<M;i++)
{
	for(j=0;j<N;j++)
	{ 
		if((a[i][j])==!(a[j][i]))
		printf("%d\t",1);
		else
		printf("%d\t",a[i][j]);
	}
	printf("\n");
}
	printf("\n");		
	int k;
	for(i=0;i<M;i++)
	{
		for(j=0;j<N;j++)
		{
			for(k=0;k<N;k++)
  			{
				if(a[i][j]&&(a[j][k]))
    			a[i][k]=1;
  			}
		}
	}
	printf("传递:\n");
	for(i=0;i<M;i++)
	{
		for(j=0;j<N;j++)
		printf("%d\t",a[i][j]);
		printf("\n");
	}
}
实验二 关系性质判断及闭包计算 1、实验目的 (1)熟悉关系的性质,掌握求判断关系性质的方法。 (2)熟悉Warshall算法,掌握求关系的自反闭包、对闭包和传递闭包的方法。 2、实验内容与要求 定义1 设R是集合X上的二元关系,对任意的x∈X,都满足<x,x>∈R,则R是自反的。 定义2 设R是集合X上的二元关系,对任意的x∈X,都满足<x,x>ÏR,则R是反自反的。 定义3 设R是集合X上的二元关系,对任意的x,y∈X,满足<x,y>∈RÞ<y,x>∈R,则R是对的。 定义4 设R是集合X上的二元关系,对任意的x,y∈X,满足<x,y>∈R∧<y,x>∈RÞx=y,则R是反对的。 定义5 设R是集合X上的二元关系,对任意的x,y,z∈X,满足<x,y>∈R∧<y,z>∈RÞ<x,z>∈R,则R是传递的。 定义6 设R是A上的二元关系,R的自反(对、传递)闭包是关系R1,则 ① R1是自反的(对的、传递的) ② RÍR1 ③ 对任何自反的(对的、传递的)关系R2,若RÍR2,则R1ÍR2。 R的自反、对和传递闭包分别记为r(R)、s(R)和t(R)。 定理1 令RÍA´A,则 ① r(R)=R∪IA ② s(R)=R∪R-1 ③ t(R)=R∪R2∪R3… Warshall算法:设R是n个元素集合上的二元关系,M是R的关系矩阵; (1) 置新矩阵A:=M (2) 置i:=1; (3) for j=1 to n do if A[j,i]=1 then do for k=1 to n do A[j,k]:=A[j,k]+A[i,k] (4) i=i+1; (5) if i<=n then to (3) else stop 本实验要求: (1)从键盘输入一个关系的关系矩阵,判断该关系是否是自反的、对的、传递的、反自反的、反对的。 (2)从键盘输入一个关系的关系矩阵,计算其自反闭包、对闭包和传递闭包,计算传递闭包时使用Warshall算法。 (3)用Python实现。
06-13
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值