最短路径dijkstra算法与Floyd算法

最短路径的题遇见的也不少了就是没有总结过,毕竟做的很烂,但每次都记不住,于是我写一个模板。第一个是dijkstra算法
分析:
dijkstra算法与之前的最小生成树的prim算法真的神似,起先都是搜索最小边,然后在更新与初始点距离的数组。
代码:

#include<iostream>
using namespace std;
const int INF = 0x3f3f3f3f;
const int MAX = 100;
int map[MAX][MAX], dist[MAX], pre[MAX];//点距离数组与前节点数组
bool s[MAX];//判定是否已访问过
int m, n;
void dijkstra(int v0) {
    for (int i = 1; i <= n; i++) {
        dist[i] = map[v0][i];//当前节点与其他所有点的距离
        s[i]=false;//初始化为全未访问过
        if (dist[i] == INF) {
            pre[i] = -1;
        }
        else pre[i] = v0;//两点可连接的前节点就是v0
    }
    s[v0] = true;
    dist[v0] = 0;
    for (int i = 2; i <= n; i++) {//查找距离最小边
        int minor = INF;
        int u = v0;
        for (int j = 1; j <= n; j++) {
            if (!s[j] && dist[j] < minor) {
                minor = dist[j];
                u = j;
            }
        }
        s[u] = true;
        for (int j = 1; j <= n; j++) {//从最小边的点更新之前的与v0的距离
            if (!s[j] && dist[u] + map[u][j] < dist[j]) {
                dist[j] = dist[u] + map[u][j];
                pre[j] = u;//如果有更小边,则说明j的前驱为u
            }
        }
    }
}
int main(void) {
    cin >> m >> n;//m为边数,n为顶点数
    memset(map, INF, sizeof(map));
    for (int i = 0; i < m; i++) {
        int a, b, l;
        cin >> a >> b >> l;
        map[a][b] = l;
    }
    dijkstra(1);
    for (int i = 1; i <= n; i++)//输出v0到其他点的最小距离
        cout << dist[i] << " ";
    cout << endl;
    for (int i = pre[4]; i!=-1; i = pre[i]) {//测试可忽略
        cout << i << " ";
    }
    system("pause");
    return 0;
}

ps:由于我这是一个模板,手上也没多少数据可以测试,所以以后用的时候要根据题目再修改。

第二种是Floyd算法;三重循环真的很让人好理解,起初我觉得起码比dijkstra算法好理解。
分析:之前的那个dijkstra用于单源最短路径,当出现要求所有点的最短路径时,耗时太厉害,所以采用Floyd算法,是通过三重循环来做,从两端点之间找一个中间点,让前段点与中间点的距离和中间点与后端点的距离之和小于两端点的直接距离,这样遍历,以此找到所有点之间的最短路径。
代码:

#include<iostream>
using namespace std;
const int INF = 0x3f3f3f3f;
const int MAX = 100;
int map[MAX][MAX], dist[MAX][MAX], pre[MAX][MAX];
int m, n;
void floyd() {
    for(int i=1;i<=n;i++)
        for (int j = 1; j <= n; j++) {
            dist[i][j] = map[i][j];
            pre[i][j] = i;
        }
    for (int i = 1; i <= n; i++) {
        for (int k = 1; k <= n; k++) {
            for (int j = 1; j <= n; j++) {
                if (dist[i][k] != INF&&dist[k][j] != INF&&dist[i][k] + dist[k][j] < dist[i][j]) {
                    dist[i][j] = dist[i][k] + dist[k][j];
                    pre[i][j] = pre[k][j];
                }
            }
        }
    }
}

int main(void) {

    cin >> m >> n;
    memset(map, INF, sizeof(map));
    for (int i = 0; i < m; i++) {
        int a, b, l;
        cin >> a >> b >> l;
        map[a][b] = l;
    }
    floyd();
    for (int i = 1; i <= n; i++) {
        cout << dist[i][n]<<" ";
    }
    cout << endl;
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= n; j++)
            cout << pre[i][j]<<" ";
        cout << endl;
    }
    cout << endl;
    int i = n;
    for (; i != pre[1][i]; i = pre[1][i])//输出路径,可以用栈,这里得到的是逆序路径。
        cout << i << " "; cout << i;
    system("pause");
    return 0;
}
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_36459536/article/details/79945289
个人分类: 数据结构
上一篇并查集模板
下一篇prim算法与dijkstra算法在更新上的区别
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭