关于将n分解为若干个不小于k的正整数之和

原题链接
将n分解为若干个不小于k的正整数之和的方案数。
1≤k≤n≤1000000。
分析:
数据范围过大,不能用背包dp。
使用挡板法。
对于n,我们就当成n个1,然后分成m组(1<=m<=n/k)。
正常的挡板法分成的m块数量要大于等于1。
现在是大于等于k,这个时候我们要把k变成1,也就是让每一块都减去k-1,一共m块,就是让n-m * (k-1),然后再插入m-1个挡板就行。
在这里插入图片描述
代码如下:

#include <stdio.h>
#include <vector>
#include <stdlib.h>
#include <math.h>
#include <iostream>
using namespace std;

const int maxv=1001000;
const int mod=1e9+7;
const int maxNum=0x7ffffff-10;
const double eps=1e-12;
const double PI=3.1415926535;
typedef long long LL;

LL ans=0,f[maxv],inv[maxv];
LL Qpow(LL a,LL b){
    LL ans=1;
    for(;b;b>>=1){
        if(b&1) ans=ans*a%mod;
        a=a*a%mod;
    }
    return ans;
}
LL C(int n,int m){
    if(n==0||m==0) return 1;
    return f[n]*inv[n-m]%mod*inv[m]%mod;
}
int main(){
    int n,k;scanf("%d %d",&n,&k);
    f[0]=inv[0]=1;
    for(int i=1;i<maxv;i++)
        f[i]=f[i-1]*i%mod,inv[i]=Qpow(f[i],mod-2);
    for(int i=1;i<=n/k;i++)
        ans=(ans+C(n-i*(k-1)-1,i-1))%mod;
    printf("%lld",ans);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值