原题链接
将n分解为若干个不小于k的正整数之和的方案数。
1≤k≤n≤1000000。
分析:
数据范围过大,不能用背包dp。
使用挡板法。
对于n,我们就当成n个1,然后分成m组(1<=m<=n/k)。
正常的挡板法分成的m块数量要大于等于1。
现在是大于等于k,这个时候我们要把k变成1,也就是让每一块都减去k-1,一共m块,就是让n-m * (k-1),然后再插入m-1个挡板就行。
代码如下:
#include <stdio.h>
#include <vector>
#include <stdlib.h>
#include <math.h>
#include <iostream>
using namespace std;
const int maxv=1001000;
const int mod=1e9+7;
const int maxNum=0x7ffffff-10;
const double eps=1e-12;
const double PI=3.1415926535;
typedef long long LL;
LL ans=0,f[maxv],inv[maxv];
LL Qpow(LL a,LL b){
LL ans=1;
for(;b;b>>=1){
if(b&1) ans=ans*a%mod;
a=a*a%mod;
}
return ans;
}
LL C(int n,int m){
if(n==0||m==0) return 1;
return f[n]*inv[n-m]%mod*inv[m]%mod;
}
int main(){
int n,k;scanf("%d %d",&n,&k);
f[0]=inv[0]=1;
for(int i=1;i<maxv;i++)
f[i]=f[i-1]*i%mod,inv[i]=Qpow(f[i],mod-2);
for(int i=1;i<=n/k;i++)
ans=(ans+C(n-i*(k-1)-1,i-1))%mod;
printf("%lld",ans);
return 0;
}