M/M/1中bessel函数求极限

根据文章
在这里插入图片描述
在这里插入图片描述

t t t 趋向于 ∞ \infty 时,对于
lim ⁡ t ⟶ ∞ e − ( λ 1 ∗ q + μ ) ∗ t ∗ t ∗ I i ( 2 ∗ t ∗ λ 1 ∗ q ∗ μ ) = lim ⁡ t ⟶ ∞ e ( 2 ∗ λ 1 μ q − ( λ 1 ∗ q + μ ) ) ∗ t ∗ 1 2 ∗ π ∗ ( λ 1 ∗ μ ∗ q ) − 1 4 \lim_{t\longrightarrow\infty} e^{-(\lambda_1*q+\mu)*t}*t*I_i(2*t*\sqrt{\lambda1*q*\mu})\\ =\lim_{t\longrightarrow\infty} e^{(2*\sqrt{\lambda_1\mu q}-(\lambda_1*q+\mu))*t}*\frac{1}{2*\sqrt{\pi}}*(\lambda1*\mu*q)^{-\frac{1}{4}} limte(λ1q+μ)ttIi(2tλ1qμ )=limte(2λ1μq (λ1q+μ))t2π 1(λ1μq)41
因为
2 ∗ λ 1 μ q − ( λ 1 ∗ q + μ ) < = 0 2*\sqrt{\lambda_1\mu q}-(\lambda_1*q+\mu)<=0 2λ1μq (λ1q+μ)<=0

所以,我们有
lim ⁡ t ⟶ ∞ e − ( λ 1 ∗ q + μ ) ∗ t ∗ t ∗ I i ( 2 ∗ t ∗ λ 1 ∗ q ∗ μ ) = lim ⁡ t ⟶ ∞ e ( 2 ∗ λ 1 μ q − ( λ 1 ∗ q + μ ) ) ∗ t ∗ 1 2 ∗ π ∗ ( λ 1 ∗ μ ∗ q ) − 1 4 = 0. \lim_{t\longrightarrow\infty} e^{-(\lambda_1*q+\mu)*t}*t*I_i(2*t*\sqrt{\lambda1*q*\mu})\\ =\lim_{t\longrightarrow\infty} e^{(2*\sqrt{\lambda_1\mu q}-(\lambda_1*q+\mu))*t}*\frac{1}{2*\sqrt{\pi}}*(\lambda1*\mu*q)^{-\frac{1}{4}}\\ =0. limte(λ1q+μ)ttIi(2tλ1qμ )=limte(2λ1μq (λ1q+μ))t2π 1(λ1μq)41=0.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值