根据文章
当
t
t
t 趋向于
∞
\infty
∞ 时,对于
lim
t
⟶
∞
e
−
(
λ
1
∗
q
+
μ
)
∗
t
∗
t
∗
I
i
(
2
∗
t
∗
λ
1
∗
q
∗
μ
)
=
lim
t
⟶
∞
e
(
2
∗
λ
1
μ
q
−
(
λ
1
∗
q
+
μ
)
)
∗
t
∗
1
2
∗
π
∗
(
λ
1
∗
μ
∗
q
)
−
1
4
\lim_{t\longrightarrow\infty} e^{-(\lambda_1*q+\mu)*t}*t*I_i(2*t*\sqrt{\lambda1*q*\mu})\\ =\lim_{t\longrightarrow\infty} e^{(2*\sqrt{\lambda_1\mu q}-(\lambda_1*q+\mu))*t}*\frac{1}{2*\sqrt{\pi}}*(\lambda1*\mu*q)^{-\frac{1}{4}}
limt⟶∞e−(λ1∗q+μ)∗t∗t∗Ii(2∗t∗λ1∗q∗μ)=limt⟶∞e(2∗λ1μq−(λ1∗q+μ))∗t∗2∗π1∗(λ1∗μ∗q)−41
因为
2
∗
λ
1
μ
q
−
(
λ
1
∗
q
+
μ
)
<
=
0
2*\sqrt{\lambda_1\mu q}-(\lambda_1*q+\mu)<=0
2∗λ1μq−(λ1∗q+μ)<=0
所以,我们有
lim
t
⟶
∞
e
−
(
λ
1
∗
q
+
μ
)
∗
t
∗
t
∗
I
i
(
2
∗
t
∗
λ
1
∗
q
∗
μ
)
=
lim
t
⟶
∞
e
(
2
∗
λ
1
μ
q
−
(
λ
1
∗
q
+
μ
)
)
∗
t
∗
1
2
∗
π
∗
(
λ
1
∗
μ
∗
q
)
−
1
4
=
0.
\lim_{t\longrightarrow\infty} e^{-(\lambda_1*q+\mu)*t}*t*I_i(2*t*\sqrt{\lambda1*q*\mu})\\ =\lim_{t\longrightarrow\infty} e^{(2*\sqrt{\lambda_1\mu q}-(\lambda_1*q+\mu))*t}*\frac{1}{2*\sqrt{\pi}}*(\lambda1*\mu*q)^{-\frac{1}{4}}\\ =0.
limt⟶∞e−(λ1∗q+μ)∗t∗t∗Ii(2∗t∗λ1∗q∗μ)=limt⟶∞e(2∗λ1μq−(λ1∗q+μ))∗t∗2∗π1∗(λ1∗μ∗q)−41=0.