f ( x ) ∼ ∑ n = 1 ∞ b n sin n x , ( 10 ) f(x) \sim \sum_{n=1}^{\infty} b_{n} \sin n x, \quad\quad(10) f(x)∼n=1∑∞bnsinnx,(10)
为了证明傅里叶级数的收敛定理,先证明下面两个预备定理.
预备定理 1 (贝塞尔 (Bessel) 不等式)
若函数 f f f 在 [ − π , π ] [-\pi, \pi] [−π,π] 上可积, 则
a 0 2 2 + ∑ n = 1 ∞ ( a n 2 + b n 2 ) ⩽ 1 π ∫ − π π f 2 ( x ) d x , ( 1 ) \cfrac{a_{0}^{2}}{2}+\sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right) \leqslant \cfrac{1}{\pi} \int_{-\pi}^{\pi} f^{2}(x) \mathrm{d} x, \quad\quad(1) 2a02+n=1∑∞(an2+bn2)⩽π1∫−ππf2(x)dx,(1)
其中 a n , b n a_{n}, b_{n} an,bn 为 f f f 的傅里叶系数. (1) 式称为贝塞尔不等式.
证
令
S m ( x ) = a 0 2 + ∑ n = 1 m ( a n cos n x + b n sin n x ) . S_{m}(x)=\cfrac{a_{0}}{2}+\sum_{n=1}^{m}\left(a_{n} \cos n x+b_{n} \sin n x\right) . Sm(x)=2a0+n=1∑m(ancosnx+bnsinnx).
考察积分
∫ − π π [ f ( x ) − S m ( x ) ] 2 d x = ∫ − π π f 2 ( x ) d x − 2 ∫ − π π f ( x ) S m ( x ) d x + ∫ − π π S m 2 ( x ) d x . ( 2 ) \begin{aligned} & \int_{-\pi}^{\pi}\left[f(x)-S_{m}(x)\right]^{2} \mathrm{~d} x \\ = & \int_{-\pi}^{\pi} f^{2}(x) \mathrm{d} x-2 \int_{-\pi}^{\pi} f(x) S_{m}(x) \mathrm{d} x+\int_{-\pi}^{\pi} S_{m}^{2}(x) \mathrm{d} x . \quad\quad(2) \end{aligned} =∫−ππ[f(x)−Sm(x)]2 dx∫−ππf2(x)dx−2∫−ππf(x)Sm(x)dx+∫−ππSm2(x)dx.(2)
由于
∫ − π π f ( x ) S m ( x ) d x = a 0 2 ∫ − π π f ( x ) d x + ∑ n = 1 m ( a n ∫ − π π f ( x ) cos n x d x + b n ∫ − π π f ( x ) sin n x d x ) . \begin{aligned} & \int_{-\pi}^{\pi} f(x) S_{m}(x) \mathrm{d} x \\ = & \cfrac{a_{0}}{2} \int_{-\pi}^{\pi} f(x) \mathrm{d} x+\sum_{n=1}^{m}\left(a_{n} \int_{-\pi}^{\pi} f(x) \cos n x \mathrm{~d} x+b_{n} \int_{-\pi}^{\pi} f(x) \sin n x \mathrm{~d} x\right) . \end{aligned} =∫−ππf(x)Sm(x)dx2a0∫−ππf(x)dx+n=1∑m(an∫−ππf(x)cosnx dx+bn∫−ππf(x)sinnx dx).
根据傅里叶系数公式 ( § 1 (\S 1 (§1, 公式 ( 10 ) ) (10)) (10)) 可得
∫ − π π f ( x ) S m ( x ) d x = π 2 a 0 2 + π ∑ n = 1 m ( a n 2 + b n 2 ) . ( 3 ) \int_{-\pi}^{\pi} f(x) S_{m}(x) \mathrm{d} x=\cfrac{\pi}{2} a_{0}^{2}+\pi \sum_{n=1}^{m}\left(a_{n}^{2}+b_{n}^{2}\right) .\quad\quad(3) ∫−ππf(x)Sm(x)dx=2