数学分析(十五)-傅里叶级数3-收敛定理的证明1-预备定理:贝塞尔 (Bessel) 不等式、傅里叶级数部分和Sₙ(x)

这篇博客介绍了傅里叶级数收敛定理的证明,首先阐述了贝塞尔不等式,证明了当n趋向无穷大时傅里叶系数的极限为0。接着,通过推论1和推论2讨论了积分与傅里叶系数的关系,并给出预备定理2,展示了傅里叶级数部分和Sn(x)的积分表示形式。
摘要由CSDN通过智能技术生成

f ( x ) ∼ ∑ n = 1 ∞ b n sin ⁡ n x , ( 10 ) f(x) \sim \sum_{n=1}^{\infty} b_{n} \sin n x, \quad\quad(10) f(x)n=1bnsinnx,(10)


为了证明傅里叶级数的收敛定理,先证明下面两个预备定理.

预备定理 1 (贝塞尔 (Bessel) 不等式)

若函数 f f f [ − π , π ] [-\pi, \pi] [π,π] 上可积, 则

a 0 2 2 + ∑ n = 1 ∞ ( a n 2 + b n 2 ) ⩽ 1 π ∫ − π π f 2 ( x ) d x , ( 1 ) \cfrac{a_{0}^{2}}{2}+\sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right) \leqslant \cfrac{1}{\pi} \int_{-\pi}^{\pi} f^{2}(x) \mathrm{d} x, \quad\quad(1) 2a02+n=1(an2+bn2)π1ππf2(x)dx,(1)

其中 a n , b n a_{n}, b_{n} an,bn f f f 的傅里叶系数. (1) 式称为贝塞尔不等式.

S m ( x ) = a 0 2 + ∑ n = 1 m ( a n cos ⁡ n x + b n sin ⁡ n x ) . S_{m}(x)=\cfrac{a_{0}}{2}+\sum_{n=1}^{m}\left(a_{n} \cos n x+b_{n} \sin n x\right) . Sm(x)=2a0+n=1m(ancosnx+bnsinnx).

考察积分

∫ − π π [ f ( x ) − S m ( x ) ] 2   d x = ∫ − π π f 2 ( x ) d x − 2 ∫ − π π f ( x ) S m ( x ) d x + ∫ − π π S m 2 ( x ) d x . ( 2 ) \begin{aligned} & \int_{-\pi}^{\pi}\left[f(x)-S_{m}(x)\right]^{2} \mathrm{~d} x \\ = & \int_{-\pi}^{\pi} f^{2}(x) \mathrm{d} x-2 \int_{-\pi}^{\pi} f(x) S_{m}(x) \mathrm{d} x+\int_{-\pi}^{\pi} S_{m}^{2}(x) \mathrm{d} x . \quad\quad(2) \end{aligned} =ππ[f(x)Sm(x)]2 dxππf2(x)dx2ππf(x)Sm(x)dx+ππSm2(x)dx.(2)

由于

∫ − π π f ( x ) S m ( x ) d x = a 0 2 ∫ − π π f ( x ) d x + ∑ n = 1 m ( a n ∫ − π π f ( x ) cos ⁡ n x   d x + b n ∫ − π π f ( x ) sin ⁡ n x   d x ) . \begin{aligned} & \int_{-\pi}^{\pi} f(x) S_{m}(x) \mathrm{d} x \\ = & \cfrac{a_{0}}{2} \int_{-\pi}^{\pi} f(x) \mathrm{d} x+\sum_{n=1}^{m}\left(a_{n} \int_{-\pi}^{\pi} f(x) \cos n x \mathrm{~d} x+b_{n} \int_{-\pi}^{\pi} f(x) \sin n x \mathrm{~d} x\right) . \end{aligned} =ππf(x)Sm(x)dx2a0ππf(x)dx+n=1m(anππf(x)cosnx dx+bnππf(x)sinnx dx).

根据傅里叶系数公式 ( § 1 (\S 1 (§1, 公式 ( 10 ) ) (10)) (10)) 可得

∫ − π π f ( x ) S m ( x ) d x = π 2 a 0 2 + π ∑ n = 1 m ( a n 2 + b n 2 ) . ( 3 ) \int_{-\pi}^{\pi} f(x) S_{m}(x) \mathrm{d} x=\cfrac{\pi}{2} a_{0}^{2}+\pi \sum_{n=1}^{m}\left(a_{n}^{2}+b_{n}^{2}\right) .\quad\quad(3) ππf(x)Sm(x)dx=2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值