数学分析(十五)-傅里叶级数3-收敛定理的证明1-预备定理:贝塞尔 (Bessel) 不等式、傅里叶级数部分和Sₙ(x)

f ( x ) ∼ ∑ n = 1 ∞ b n sin ⁡ n x , ( 10 ) f(x) \sim \sum_{n=1}^{\infty} b_{n} \sin n x, \quad\quad(10) f(x)n=1bnsinnx,(10)


为了证明傅里叶级数的收敛定理,先证明下面两个预备定理.

预备定理 1 (贝塞尔 (Bessel) 不等式)

若函数 f f f [ − π , π ] [-\pi, \pi] [π,π] 上可积, 则

a 0 2 2 + ∑ n = 1 ∞ ( a n 2 + b n 2 ) ⩽ 1 π ∫ − π π f 2 ( x ) d x , ( 1 ) \cfrac{a_{0}^{2}}{2}+\sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right) \leqslant \cfrac{1}{\pi} \int_{-\pi}^{\pi} f^{2}(x) \mathrm{d} x, \quad\quad(1) 2a02+n=1(an2+bn2)π1ππf2(x)dx,(1)

其中 a n , b n a_{n}, b_{n} an,bn f f f 的傅里叶系数. (1) 式称为贝塞尔不等式.

S m ( x ) = a 0 2 + ∑ n = 1 m ( a n cos ⁡ n x + b n sin ⁡ n x ) . S_{m}(x)=\cfrac{a_{0}}{2}+\sum_{n=1}^{m}\left(a_{n} \cos n x+b_{n} \sin n x\right) . Sm(x)=2a0+n=1m(ancosnx+bnsinnx).

考察积分

∫ − π π [ f ( x ) − S m ( x ) ] 2   d x = ∫ − π π f 2 ( x ) d x − 2 ∫ − π π f ( x ) S m ( x ) d x + ∫ − π π S m 2 ( x ) d x . ( 2 ) \begin{aligned} & \int_{-\pi}^{\pi}\left[f(x)-S_{m}(x)\right]^{2} \mathrm{~d} x \\ = & \int_{-\pi}^{\pi} f^{2}(x) \mathrm{d} x-2 \int_{-\pi}^{\pi} f(x) S_{m}(x) \mathrm{d} x+\int_{-\pi}^{\pi} S_{m}^{2}(x) \mathrm{d} x . \quad\quad(2) \end{aligned} =ππ[f(x)Sm(x)]2 dxππf2(x)dx2ππf(x)Sm(x)dx+ππSm2(x)dx.(2)

由于

∫ − π π f ( x ) S m ( x ) d x = a 0 2 ∫ − π π f ( x ) d x + ∑ n = 1 m ( a n ∫ − π π f ( x ) cos ⁡ n x   d x + b n ∫ − π π f ( x ) sin ⁡ n x   d x ) . \begin{aligned} & \int_{-\pi}^{\pi} f(x) S_{m}(x) \mathrm{d} x \\ = & \cfrac{a_{0}}{2} \int_{-\pi}^{\pi} f(x) \mathrm{d} x+\sum_{n=1}^{m}\left(a_{n} \int_{-\pi}^{\pi} f(x) \cos n x \mathrm{~d} x+b_{n} \int_{-\pi}^{\pi} f(x) \sin n x \mathrm{~d} x\right) . \end{aligned} =ππf(x)Sm(x)dx2a0ππf(x)dx+n=1m(anππf(x)cosnx dx+bnππf(x)sinnx dx).

根据傅里叶系数公式 ( § 1 (\S 1 (§1, 公式 ( 10 ) ) (10)) (10)) 可得

∫ − π π f ( x ) S m ( x ) d x = π 2 a 0 2 + π ∑ n = 1 m ( a n 2 + b n 2 ) . ( 3 ) \int_{-\pi}^{\pi} f(x) S_{m}(x) \mathrm{d} x=\cfrac{\pi}{2} a_{0}^{2}+\pi \sum_{n=1}^{m}\left(a_{n}^{2}+b_{n}^{2}\right) .\quad\quad(3) ππf(x)Sm(x)dx=2

  • 8
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
根据傅立叶级数的理论,一个频率为1kHz、占空比为50%的方波可以表示为一系列正弦波的叠加。方波的频谱可以通过计算傅立叶级数的系数来得到。 方波的傅立叶级数公式如下: f(t) = (4/pi) * (sin(2*pi*f*t) + (1/3)*sin(2*3*pi*f*t) + (1/5)*sin(2*5*pi*f*t) + ...) 其中,f(t)代表方波的函数,f为方波的频率。 我们以1kHz为频率的方波为例,计算其频谱: 1. 首先,计算基波分量(频率为1kHz)的幅度。根据占空比为50%,基波分量的幅度为Vp(峰-峰值)的一半,即Vp/2。 2. 然后,计算各个谐波分量的幅度。根据方波的特性,各个谐波分量的幅度按照1/n的比例递减,其中n为谐波的次数。 3. 画出频谱图,横轴表示频率,纵轴表示幅度。 以下是以1kHz频率和50%占空比的方波频谱的示意图: ``` | * * * | ** ** ** | *** *** *** | **** **** **** | ***** ***** ***** | ****** ****** ****** | ******* ******* ******* | ******** ******** ******** |********* ********* ********* ------------------------------------------------------------- 0 1kHz 2kHz 3kHz ``` 在频谱图中,基波分量位于1kHz处,幅度为Vp/2。谐波分量的幅度随着频率增加而递减,以相同的比例排列。注意,由于傅立叶级数是一个理想化的模型,实际方波的频谱可能会有一些衰减和其他非理想特性。 请注意,以上只是示意图,实际的频谱图可能需要进行更精确的计算和绘制。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值