算法分析与设计 实验1 回溯法

实验1 回溯法

学号:6130116217

专业班级:计算机科学与技术165班

课程名称:算法分析与设计实验

一、贝努力装错信封问题

1、分析

  • 此题为课本中5.6节的贝努力装错信封问题。
  • 课本中使用的是回溯法,我用带回溯的递归形式dfs重写了一遍,虽然写法略有不同,但思路大致一样。
  • 思路是:用数组int a[]记录每个信封所装信的编号,boolean vis[]记录某一封信是否装入信封。count记录所有信都错位的种数。
  • 根据对比,我的方法要比课本上的略快。

2、代码

(1).带回溯的递归形式dfs
package 实验4回溯法实验;

import java.util.*;

public class 贝努力装错信封问题 {
	static Scanner in = new Scanner(System.in);
	static int n;// 信封数目
	static int[] a = new int[50];// 保存每个信封所放信的编号
	static boolean[] vis = new boolean[50];// 记录某编号是否已装
	static int count;

	public static void main(String[] args) {
		long time = System.currentTimeMillis();
		System.out.println("input n (n<10):");
		n = in.nextInt();
		dfs(1);
		System.out.println("\ns= " + count);
		System.out.println((System.currentTimeMillis() - time) + "ms");
	}

	static void dfs(int k) {
		if (k == n + 1) {// 全部信都装完
			for (int i = 1; i <= n; ++i)// 输出所有排列
				System.out.print(a[i]);
			System.out.print(" ");
			if (++count % 10 == 0)// 每行10个
				System.out.println();

			return;
		}
		for (int i = 1; i <= n; ++i) {
			if (!vis[i] && k != i) {// 回溯
				vis[i] = true;
				a[k] = i;
				dfs(k + 1);
				vis[i] = false;
			}
		}
	}
}
(2).课本中的代码
package 实验4回溯法实验;

import java.util.*;

public class 贝努力装错信封问题book {
	static Scanner in = new Scanner(System.in);
	static int n;// 信封数目
	static int[] a = new int[50];// 保存每个信封所放信的编号
	static int s = 0;

	public static void main(String[] args) {
		long time = System.currentTimeMillis();

		System.out.println("input n  (2<n<10):");
		n = in.nextInt();
		put(1); // 从第1个数开始
		System.out.printf("\ns= %d\n", s); // 输出个数
		System.out.println((System.currentTimeMillis() - time) + "ms");
	}

	static int put(int k) {
		int i, j, u;
		if (k <= n) {
			for (i = 1; i <= n; i++) {
				a[k] = i; // 探索第k个数赋值i
				if (a[k] != k) {
					for (u = 0, j = 1; j <= k - 1; j++)
						if (a[k] == a[j]) // 若出现重复数字
							u = 1; // 第k数不可置i,则u=1
				} else
					continue; // a[i]在自然位时返回进行下一轮探索
				if (u == 0) { // 若第k数可置i,则检测是否到n个数

					if (k == n) { // 已到n,则输出解

						s++;
						System.out.printf(" ");
						for (j = 1; j <= n; j++)
							System.out.printf("%d", a[j]);
						if (s % 10 == 0)
							System.out.printf("\n");
					} else
						put(k + 1); // 若没到n个数,则探索下一个数 put(k+1)
				}
			}
		}
		return s;
	}
}

3、测试

  • 下面为3组运行结果截图
(1).带回溯的递归形式dfs

n为6
在这里插入图片描述
n为8
在这里插入图片描述
n为10
在这里插入图片描述

(2).课本中的程序

n为6
在这里插入图片描述
n为8
在这里插入图片描述
n为10
在这里插入图片描述

4、比较

  • 下面是两种方法分别运行5次所用时间记录。
n带回溯的递归dfs(ms)课本(ms)
513221433
715871727
826643391
962948716
105581782675
  • 不难看出:虽然我的做法与课本上的思路大致相同,但是效率是要略高一筹。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值