实验1 回溯法
学号:6130116217
专业班级:计算机科学与技术165班
课程名称:算法分析与设计实验
一、贝努力装错信封问题
1、分析
- 此题为课本中5.6节的贝努力装错信封问题。
- 课本中使用的是回溯法,我用带回溯的递归形式dfs重写了一遍,虽然写法略有不同,但思路大致一样。
- 思路是:用数组int a[]记录每个信封所装信的编号,boolean vis[]记录某一封信是否装入信封。count记录所有信都错位的种数。
- 根据对比,我的方法要比课本上的略快。
2、代码
(1).带回溯的递归形式dfs
package 实验4回溯法实验;
import java.util.*;
public class 贝努力装错信封问题 {
static Scanner in = new Scanner(System.in);
static int n;// 信封数目
static int[] a = new int[50];// 保存每个信封所放信的编号
static boolean[] vis = new boolean[50];// 记录某编号是否已装
static int count;
public static void main(String[] args) {
long time = System.currentTimeMillis();
System.out.println("input n (n<10):");
n = in.nextInt();
dfs(1);
System.out.println("\ns= " + count);
System.out.println((System.currentTimeMillis() - time) + "ms");
}
static void dfs(int k) {
if (k == n + 1) {// 全部信都装完
for (int i = 1; i <= n; ++i)// 输出所有排列
System.out.print(a[i]);
System.out.print(" ");
if (++count % 10 == 0)// 每行10个
System.out.println();
return;
}
for (int i = 1; i <= n; ++i) {
if (!vis[i] && k != i) {// 回溯
vis[i] = true;
a[k] = i;
dfs(k + 1);
vis[i] = false;
}
}
}
}
(2).课本中的代码
package 实验4回溯法实验;
import java.util.*;
public class 贝努力装错信封问题book {
static Scanner in = new Scanner(System.in);
static int n;// 信封数目
static int[] a = new int[50];// 保存每个信封所放信的编号
static int s = 0;
public static void main(String[] args) {
long time = System.currentTimeMillis();
System.out.println("input n (2<n<10):");
n = in.nextInt();
put(1); // 从第1个数开始
System.out.printf("\ns= %d\n", s); // 输出个数
System.out.println((System.currentTimeMillis() - time) + "ms");
}
static int put(int k) {
int i, j, u;
if (k <= n) {
for (i = 1; i <= n; i++) {
a[k] = i; // 探索第k个数赋值i
if (a[k] != k) {
for (u = 0, j = 1; j <= k - 1; j++)
if (a[k] == a[j]) // 若出现重复数字
u = 1; // 第k数不可置i,则u=1
} else
continue; // a[i]在自然位时返回进行下一轮探索
if (u == 0) { // 若第k数可置i,则检测是否到n个数
if (k == n) { // 已到n,则输出解
s++;
System.out.printf(" ");
for (j = 1; j <= n; j++)
System.out.printf("%d", a[j]);
if (s % 10 == 0)
System.out.printf("\n");
} else
put(k + 1); // 若没到n个数,则探索下一个数 put(k+1)
}
}
}
return s;
}
}
3、测试
- 下面为3组运行结果截图
(1).带回溯的递归形式dfs
n为6
n为8
n为10
(2).课本中的程序
n为6
n为8
n为10
4、比较
- 下面是两种方法分别运行5次所用时间记录。
n | 带回溯的递归dfs(ms) | 课本(ms) |
---|---|---|
5 | 1322 | 1433 |
7 | 1587 | 1727 |
8 | 2664 | 3391 |
9 | 6294 | 8716 |
10 | 55817 | 82675 |
- 不难看出:虽然我的做法与课本上的思路大致相同,但是效率是要略高一筹。