机器学习中的数学

本文探讨了机器学习中线性代数的基础,包括张量、范数和对数的作用。解释了张量的概念,强调了L1和L2范数在度量向量差异和正则化中的应用。还提到了对数在解决溢出问题上的功能。此外,介绍了线性代数中的矩阵逆和正交矩阵。同时,文章也涉及信息论的熵,阐述了熵的特征及其在计算损失和决策树中的作用。
摘要由CSDN通过智能技术生成

线性代数

张量

几何代数中定义的张量是基于向量和矩阵的推广,通俗一点理解的话,我们可以将标量视为零阶张量,矢量视为一阶张量,那么矩阵就是二阶张量。张量是有大小和多个方向的量。

如果一个物理量,在物体的某个位置上只是一个单值,那么就是普通的标量,比如密度。如果它在同一个位置、从不同的方向上看,有不同的值,而且这个数恰好可以用矩阵乘观察方向来算出来,就是张量。

范数

有时我们需要衡量一个向量的大小,在机器学习中,我们经常使用被称为范数(norm) 的函数衡量矩阵大小。
L-P范数 如下:
在这里插入图片描述

  1. 当p=1时,为L1范数,公式为:
    在这里插入图片描述
    L1范数有很多的名字,例如我们熟悉的曼哈顿距离、最小绝对误差等。使用L1范数可以度量两个向量间的差异,如绝对误差和。
  2. 当p=2时,为L2范数。L2范数是我们最常见最常用的范数了,我们用的最多的度量距离欧氏距离就是一种L2范数,它的定义如下:
    在这里插入图片描述
    L2范数通常会被用来做优化目标函数的正则化项,防止模型为了迎合训练集而过于复杂造成过拟合的情况,从而提高模型的泛化能力。

对数的作用

解决下溢出问题:由于太多很小的数相乘造成的问题。
由于不同底的对数的结果是等比关系,所以,有时底数是谁,是无所谓的。

线性代数常识

1 矩阵的逆
矩阵A ∈ Rn×n的逆,写作A−1,是一个矩阵,并且是唯一的。
  A − 1 A

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值