LeetCode - #52 N皇后 II

这篇博客介绍了如何利用深度优先搜索(DFS)策略解决经典的n皇后问题,旨在帮助读者理解如何在n×n的棋盘上放置皇后,使得它们互不攻击。文中给出了详细的算法实现,包括关键的`totalNQueens`、`dfs`和`isValid`函数,以及时间复杂度和空间复杂度分析。此外,还提到了相关资源和社区,供读者进一步学习与交流。
摘要由CSDN通过智能技术生成

前言

我们社区陆续会将顾毅(Netflix 增长黑客,《iOS 面试之道》作者,ACE 职业健身教练。)的 Swift 算法题题解整理为文字版以方便大家学习与阅读。

LeetCode 算法到目前我们已经更新了 51 期,我们会保持更新时间和进度(周一、周三、周五早上 9:00 发布),每期的内容不多,我们希望大家可以在上班路上阅读,长久积累会有很大提升。

不积跬步,无以至千里;不积小流,无以成江海,Swift社区 伴你前行。如果大家有建议和意见欢迎在文末留言,我们会尽力满足大家的需求。

难度水平:困难

1. 描述

n 皇后问题 研究的是如何将 n 个皇后放置在 n × n 的棋盘上,并且使皇后彼此之间不能相互攻击。

给你一个整数 n ,返回 n 皇后问题 不同的解决方案的数量。

2. 示例

示例 1

输入:n = 4
输出:2
解释:如上图所示,4 皇后问题存在两个不同的解法。

示例 2

输入:n = 1
输出:1

约束条件:

  • 1 <= n <= 9

3. 答案

class NQueensII {
    func totalNQueens(_ n: Int) -> Int {
        guard n > 0 else {
            return 0
        }
        var count = 0
        var usedCols = Array(repeating: 0, count: n)
        
        dfs(&usedCols, &count, n, 0)
        
        return count
    }
    
    private func dfs(_ usedCols: inout [Int], _ count: inout Int, _ n: Int, _ row: Int) {
        if row == n {
            count += 1
            return
        }
        
        for col in 0..<n {
            if isValid(usedCols, row, col) {
                usedCols[row] = col
                dfs(&usedCols, &count, n, row + 1)
            }
        }
    }
    
    private func isValid(_ usedCols: [Int], _ row: Int, _ col: Int) -> Bool {
        var c = -1
    
        for i in 0..<row {
            c = usedCols[I] 
            
            // check col
            if c == col {
                return false
            }
            
            if abs(c - col) == abs(i - row) {
                return false
            }
        }
        
        return true
    }
}
  • 主要思想:经典的深度优先搜索,逐行填写,每次检查列和诊断,只需要关心使用哪个列。
  • 时间复杂度: O(n^n)
  • 空间复杂度: O(n)

该算法题解的仓库:LeetCode-Swift

点击前往 LeetCode 练习

关于我们

我们是由 Swift 爱好者共同维护,我们会分享以 Swift 实战、SwiftUI、Swift 基础为核心的技术内容,也整理收集优秀的学习资料。

后续还会翻译大量资料到我们公众号,有感兴趣的朋友,可以加入我们。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

网罗开发

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值