大家好,我是 展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、Harmony OS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。
图书作者:《ESP32-C3 物联网工程开发实战》
图书作者:《SwiftUI 入门,进阶与实战》
超级个体:COC上海社区主理人
特约讲师:大学讲师,谷歌亚马逊分享嘉宾
科技博主:华为HDE/HDG
我的博客内容涵盖广泛,主要分享技术教程、Bug解决方案、开发工具使用、前沿科技资讯、产品评测与使用体验。我特别关注云服务产品评测、AI 产品对比、开发板性能测试以及技术报告,同时也会提供产品优缺点分析、横向对比,并分享技术沙龙与行业大会的参会体验。我的目标是为读者提供有深度、有实用价值的技术洞察与分析。
展菲:您的前沿技术领航员
👋 大家好,我是展菲!
📱 全网搜索“展菲”,即可纵览我在各大平台的知识足迹。
📣 公众号“Swift社区”,每周定时推送干货满满的技术长文,从新兴框架的剖析到运维实战的复盘,助您技术进阶之路畅通无阻。
💬 微信端添加好友“fzhanfei”,与我直接交流,不管是项目瓶颈的求助,还是行业趋势的探讨,随时畅所欲言。
📅 最新动态:2025 年 3 月 17 日
快来加入技术社区,一起挖掘技术的无限潜能,携手迈向数字化新征程!
文章目录
摘要
AI 技术的迅猛发展,让许多开发者产生了两种截然不同的情绪:一部分人已经开始用 AI 提高学习和工作效率,而另一部分人却还在犹豫,不知道 AI 能帮自己做什么,甚至担心 AI 取代自己。
如果你也在思考这些问题,那这篇文章就是为你写的。本文会结合实际场景,详细讲解如何利用 ChatGPT 生成个性化学习计划、优化代码调试、快速生成示例代码,并提供可运行的代码示例,帮助你更高效地学习和提升编程能力。
你真的会用 AI 进行学习吗?
现在 AI 发展得这么快,很多人都在讨论 “AI 会不会取代程序员?”。但在真正面临问题时,很多开发者其实并不会高效地使用 AI 工具,主要有以下几个痛点:
- 不会用 AI 规划学习路径 —— 想学个新技术,但找资料的时候发现内容太多,根本不知道该从哪里开始。
- 代码写得磕磕绊绊,AI 也帮不上忙 —— ChatGPT 生成的代码可能会有错误或者不符合实际业务场景,很多人不知道如何让 AI 给出更精准的答案。
- AI 生成的代码能跑,但没学到真正的原理 —— 直接用 ChatGPT 生成代码,看上去能用,但自己没真正理解,导致遇到问题还是不会改。
- 害怕 AI 取代自己,不敢深入使用 —— 有些人担心,“如果 AI 真的能写代码,那我们是不是就没用了?” 于是干脆就不用 AI,而不是去学习如何与 AI 协作。
说到底,AI 不是你的敌人,而是一个超强的学习和工作辅助工具。接下来,我们就来看看怎么用 AI 提高学习效率,解决这些痛点。
让 ChatGPT 帮你制定学习计划
为什么 AI 规划的学习路径更高效?
- 针对个人情况 —— AI 可以根据你的当前水平、目标和时间安排,帮你量身定制一份学习计划。
- 避免信息过载 —— 互联网上的资料太多太杂,AI 可以帮你筛选出最核心的内容,避免浪费时间。
- 动态调整 —— 你可以随时调整学习进度,AI 也能根据你的情况给出更合适的学习方案。
ChatGPT 生成学习计划
示例提问:
我是一个 Python 初学者,想在 3 个月内学会数据分析。请帮我制定一个学习计划,包括每周的学习内容和推荐的学习资源。
ChatGPT 可能给出的学习计划:
第 1-2 周:Python 基础(变量、数据类型、控制流、函数)
第 3-4 周:NumPy 和 Pandas 入门(数据操作、统计分析)
第 5-6 周:数据可视化(Matplotlib、Seaborn)
第 7-8 周:数据清理与预处理(Pandas 进阶、数据缺失处理)
第 9-10 周:探索性数据分析(EDA)
第 11-12 周:实战项目(数据分析案例,写报告)
如何优化?
如果觉得学习计划太宽泛,你可以让 AI 进一步细化,例如:
我已经学完了 Python 基础,现在想深入 Pandas,能否给我更详细的学习任务和练习题?
这样,AI 会给出更有针对性的建议,而不是让你在海量信息中无从下手。
用 AI 进行代码调试和错误修复
AI 代码调试的优势
- 快速找出代码错误 —— AI 能解析错误信息,并告诉你哪里出了问题。
- 提供修正方案 —— AI 不仅会指出问题,还能提供修正代码,让你直接看到正确的写法。
- 优化代码结构 —— 代码能跑不代表写得好,AI 还能帮助你优化代码,让它更简洁、更高效。
ChatGPT 代码调试
假设你写了这样一段代码,但运行时报错:
def divide_numbers(a, b):
return a / b
print(divide_numbers(10, 0)) # 可能会触发 ZeroDivisionError
如果把代码贴给 ChatGPT 并询问:
这段代码有错误,如何修正并提供更好的错误处理方式?
AI 可能会这样回答:
def divide_numbers(a, b):
try:
return a / b
except ZeroDivisionError:
return "Error: Division by zero is not allowed."
print(divide_numbers(10, 0)) # 输出: Error: Division by zero is not allowed.
这样,你不仅修复了错误,还学会了如何用 try-except
处理异常,提升了代码的健壮性。
AI 生成代码示例,快速学习新技术
为什么 AI 生成代码示例很有用?
- 学习新技术更快 —— 直接让 AI 生成一个完整的示例代码,比看文档更容易理解。
- 代码风格可定制 —— 你可以让 AI 按某种风格写代码,比如 Pythonic 风格、性能优化版本等。
- 跨语言转换 —— 可以让 AI 帮你把 Python 代码转换成 Java 或其他语言。
用 ChatGPT 生成 Flask API
示例提问:
请帮我写一个 Flask API,它有一个 /hello 端点,返回 “Hello, World!”
ChatGPT 生成的代码:
from flask import Flask
app = Flask(__name__)
@app.route('/hello')
def hello():
return "Hello, World!"
if __name__ == '__main__':
app.run(debug=True)
运行方式:
python app.py
然后访问 http://127.0.0.1:5000/hello
,就可以看到 "Hello, World!"
的输出了。
这样,你几乎不用查文档,就能快速跑起来一个 Flask 项目,学习效率直接翻倍。
常见问题
Q1: ChatGPT 生成的代码可靠吗?
AI 生成的代码通常可以跑起来,但并不一定完美,尤其是涉及复杂业务逻辑时,仍然需要你去理解和优化。
Q2: AI 会不会取代程序员?
不会,AI 只是辅助工具,真正理解业务需求、架构设计、优化性能这些工作,还是需要开发者来做。
Q3: 我该如何更深入地利用 AI 学习?
- 尝试用 AI 生成代码后,自己手动改进它。
- 让 AI 解释某个技术原理,而不仅仅是生成代码。
- 让 AI 推荐学习资源,并结合实际项目练习。
总结
AI 不能替代你,但它可以让你的学习效率大大提升。学会使用 AI,不仅能帮你更快地学习新技术,还能优化代码、提高调试效率。与其害怕 AI,不如学会如何与 AI 合作,才能在这个时代站稳脚跟。