开发者必看!如何用 ChatGPT 和 AI 工具提升学习效率,快速进阶技能?

在这里插入图片描述

网罗开发 (小红书、快手、视频号同名)

  大家好,我是 展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、Harmony OS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。

图书作者:《ESP32-C3 物联网工程开发实战》
图书作者:《SwiftUI 入门,进阶与实战》
超级个体:COC上海社区主理人
特约讲师:大学讲师,谷歌亚马逊分享嘉宾
科技博主:华为HDE/HDG

我的博客内容涵盖广泛,主要分享技术教程、Bug解决方案、开发工具使用、前沿科技资讯、产品评测与使用体验。我特别关注云服务产品评测、AI 产品对比、开发板性能测试以及技术报告,同时也会提供产品优缺点分析、横向对比,并分享技术沙龙与行业大会的参会体验。我的目标是为读者提供有深度、有实用价值的技术洞察与分析。

展菲:您的前沿技术领航员
👋 大家好,我是展菲!
📱 全网搜索“展菲”,即可纵览我在各大平台的知识足迹。
📣 公众号“Swift社区”,每周定时推送干货满满的技术长文,从新兴框架的剖析到运维实战的复盘,助您技术进阶之路畅通无阻。
💬 微信端添加好友“fzhanfei”,与我直接交流,不管是项目瓶颈的求助,还是行业趋势的探讨,随时畅所欲言。
📅 最新动态:2025 年 3 月 17 日
快来加入技术社区,一起挖掘技术的无限潜能,携手迈向数字化新征程!


摘要

AI 技术的迅猛发展,让许多开发者产生了两种截然不同的情绪:一部分人已经开始用 AI 提高学习和工作效率,而另一部分人却还在犹豫,不知道 AI 能帮自己做什么,甚至担心 AI 取代自己。

如果你也在思考这些问题,那这篇文章就是为你写的。本文会结合实际场景,详细讲解如何利用 ChatGPT 生成个性化学习计划、优化代码调试、快速生成示例代码,并提供可运行的代码示例,帮助你更高效地学习和提升编程能力。

你真的会用 AI 进行学习吗?

现在 AI 发展得这么快,很多人都在讨论 “AI 会不会取代程序员?”。但在真正面临问题时,很多开发者其实并不会高效地使用 AI 工具,主要有以下几个痛点:

  1. 不会用 AI 规划学习路径 —— 想学个新技术,但找资料的时候发现内容太多,根本不知道该从哪里开始。
  2. 代码写得磕磕绊绊,AI 也帮不上忙 —— ChatGPT 生成的代码可能会有错误或者不符合实际业务场景,很多人不知道如何让 AI 给出更精准的答案。
  3. AI 生成的代码能跑,但没学到真正的原理 —— 直接用 ChatGPT 生成代码,看上去能用,但自己没真正理解,导致遇到问题还是不会改。
  4. 害怕 AI 取代自己,不敢深入使用 —— 有些人担心,“如果 AI 真的能写代码,那我们是不是就没用了?” 于是干脆就不用 AI,而不是去学习如何与 AI 协作。

说到底,AI 不是你的敌人,而是一个超强的学习和工作辅助工具。接下来,我们就来看看怎么用 AI 提高学习效率,解决这些痛点。

让 ChatGPT 帮你制定学习计划

为什么 AI 规划的学习路径更高效?

  • 针对个人情况 —— AI 可以根据你的当前水平、目标和时间安排,帮你量身定制一份学习计划。
  • 避免信息过载 —— 互联网上的资料太多太杂,AI 可以帮你筛选出最核心的内容,避免浪费时间。
  • 动态调整 —— 你可以随时调整学习进度,AI 也能根据你的情况给出更合适的学习方案。

ChatGPT 生成学习计划

示例提问

我是一个 Python 初学者,想在 3 个月内学会数据分析。请帮我制定一个学习计划,包括每周的学习内容和推荐的学习资源。

ChatGPT 可能给出的学习计划
第 1-2 周:Python 基础(变量、数据类型、控制流、函数)
第 3-4 周:NumPy 和 Pandas 入门(数据操作、统计分析)
第 5-6 周:数据可视化(Matplotlib、Seaborn)
第 7-8 周:数据清理与预处理(Pandas 进阶、数据缺失处理)
第 9-10 周:探索性数据分析(EDA)
第 11-12 周:实战项目(数据分析案例,写报告)

如何优化?
如果觉得学习计划太宽泛,你可以让 AI 进一步细化,例如:

我已经学完了 Python 基础,现在想深入 Pandas,能否给我更详细的学习任务和练习题?

这样,AI 会给出更有针对性的建议,而不是让你在海量信息中无从下手。

用 AI 进行代码调试和错误修复

AI 代码调试的优势

  • 快速找出代码错误 —— AI 能解析错误信息,并告诉你哪里出了问题。
  • 提供修正方案 —— AI 不仅会指出问题,还能提供修正代码,让你直接看到正确的写法。
  • 优化代码结构 —— 代码能跑不代表写得好,AI 还能帮助你优化代码,让它更简洁、更高效。

ChatGPT 代码调试

假设你写了这样一段代码,但运行时报错:

def divide_numbers(a, b):
    return a / b

print(divide_numbers(10, 0))  # 可能会触发 ZeroDivisionError

如果把代码贴给 ChatGPT 并询问:

这段代码有错误,如何修正并提供更好的错误处理方式?

AI 可能会这样回答:

def divide_numbers(a, b):
    try:
        return a / b
    except ZeroDivisionError:
        return "Error: Division by zero is not allowed."

print(divide_numbers(10, 0))  # 输出: Error: Division by zero is not allowed.

这样,你不仅修复了错误,还学会了如何用 try-except 处理异常,提升了代码的健壮性。

AI 生成代码示例,快速学习新技术

为什么 AI 生成代码示例很有用?

  • 学习新技术更快 —— 直接让 AI 生成一个完整的示例代码,比看文档更容易理解。
  • 代码风格可定制 —— 你可以让 AI 按某种风格写代码,比如 Pythonic 风格、性能优化版本等。
  • 跨语言转换 —— 可以让 AI 帮你把 Python 代码转换成 Java 或其他语言。

用 ChatGPT 生成 Flask API

示例提问

请帮我写一个 Flask API,它有一个 /hello 端点,返回 “Hello, World!”

ChatGPT 生成的代码

from flask import Flask

app = Flask(__name__)

@app.route('/hello')
def hello():
    return "Hello, World!"

if __name__ == '__main__':
    app.run(debug=True)

运行方式

python app.py

然后访问 http://127.0.0.1:5000/hello,就可以看到 "Hello, World!" 的输出了。

这样,你几乎不用查文档,就能快速跑起来一个 Flask 项目,学习效率直接翻倍。

常见问题

Q1: ChatGPT 生成的代码可靠吗?
AI 生成的代码通常可以跑起来,但并不一定完美,尤其是涉及复杂业务逻辑时,仍然需要你去理解和优化。

Q2: AI 会不会取代程序员?
不会,AI 只是辅助工具,真正理解业务需求、架构设计、优化性能这些工作,还是需要开发者来做。

Q3: 我该如何更深入地利用 AI 学习?

  • 尝试用 AI 生成代码后,自己手动改进它。
  • 让 AI 解释某个技术原理,而不仅仅是生成代码。
  • 让 AI 推荐学习资源,并结合实际项目练习。

总结

AI 不能替代你,但它可以让你的学习效率大大提升。学会使用 AI,不仅能帮你更快地学习新技术,还能优化代码、提高调试效率。与其害怕 AI,不如学会如何与 AI 合作,才能在这个时代站稳脚跟。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

网罗开发

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值