测试方法之正交试验

正交试验设计是一种高效的实验设计方法,通过正交表选择有代表性的测试点,确保因素间的交叉全面且均衡。文章介绍了正交表的结构、特点以及选择方法,并通过案例说明如何在测试中减少测试用例数量,提高测试覆盖率,降低测试成本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、正交实验法 

正交试验设计(Orthogonal experimental design)是研究多因素多水平的又一种设计方法,它是根据正交性从全面试验中挑选出部分有代表性的点进行试验,这些有代表性的点具备了“均匀分散,齐整可比”的特点,正交试验设计是分式析因设计的主要方法。是一种高效率、快速、经济的实验设计方法。
  正交实验设计方法:依据Galois理论,从大量的(实验)数据(测试例)中挑选适量的、有代表性的点(例),从而合理地安排实验(测试)的一种科学实验设计方法。类似的方法有:聚类分析方法、因子方法方法等。

二、正交表

将正交试验选择的水平组合,列成一种特制的表格,一般用Ln(m的k次方)表示,L代表是正交表,n代表试验次数或正交表的行数,k代表最多可安排影响指标因素的个数或正交表的列数,m表示每个因素水平数,且有n=k因数*(m水平数-1)+1。

最简单的正交表是L4(2³),含意如下:“L”代表正交表;L 下角的数字“4”表示有 4 横行,简称行,即要做四次试验;括号内的指数“3”表示有3 纵列,简称列,即最多允许安排的因素是3 个;括号内的数“2”表示表的主要部分只有2 种数字,即因素有两种水平1与2。正交表的特点是其安排的试验方法具有均衡搭配特性。

三、正交表特点

正交表必须满足这两个特点,有一条不满足,就不是正交表。

齐整可比:每一列中,不同的数字出现的次数相等,即对任何一个因素,不同水平的实验次数是一样的。(整齐可比性)
均匀分散:任意两列中,同一行的两个数字构成有序数对,每种数对出现的次数相同,即任何两个因素之间都是交叉分组的全面实验。(均衡搭配性)
将正交表的任意两行(或两列)交换,仍是正交表。
将某一列中的数字号码相互对换,仍是正交表。

四、如何选择正交表
1、考虑因素(变量)的个数
2、考虑因素水平(变量的取值)的个数
3、考虑正交表的行数
4、取行数最少的一个
五、确定因素数和水平数
1、因素数:确定测试中有多少个相互独立的考察变量。
2、水平数:确定任何一个因素在实验中能够取得的最多个值。

五、案例

1、案例1:

 

姓名  
身份证号  
手机号  

测试的控件有3个:姓名、身份证号、手机号,也就是要考虑因素有三个;而每个因素里的状态有两个:填与不填,我们可以列出所有测试用例9个如下:

序号 姓名 身份证号
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王大力测试进阶之路

打赏博主喝瓶水吧!!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值