tf.truncated_normal()函数介绍和示例

本文详细介绍了TensorFlow中tf.truncated_normal()函数的使用方法,该函数用于生成截断正态分布的随机数,当随机数与均值的差值超过两倍标准差时,会重新生成。文章通过示例代码展示了如何设置shape、mean和stddev参数来生成特定形状和分布的随机数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

tf.truncated_normal()函数介绍和示例
tf.truncated_normal(shape, mean, stddev)

释义:截断的产生正态分布的随机数,即随机数与均值的差值若大于两倍的标准差,则重新生成。

  • shape,生成张量的维度
  • mean,均值
  • stddev,标准差

示例

import tensorflow as tf
 
c = tf.truncated_normal(shape=[2,3], mean=0, stddev=1)
 
with tf.Session() as sess:
    print(sess.run(c))
[[ 0.4467126  -0.0340242  -0.04337584]
 [-0.3339688   0.05464906 -0.7006247 ]]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值