tf.truncated_normal() 函数介绍

        从截断的正态分布中输出随机值。 shape表示生成张量的维度,mean是均值,stddev是标准差。这个函数产生正太分布,均值和标准差自己设定。这是一个截断的产生正太分布的函数,就是说产生正太分布的值如果与均值的差值大于两倍的标准差,那就重新生成。和一般的正太分布的产生随机数据比起来,这个函数产生的随机数与均值的差距不会超过两倍的标准差,但是一般的别的函数是可能的。

       生成的值服从具有指定平均值和标准偏差的正态分布,如果生成的值大于平均值2个标准偏差的值则丢弃重新选择。

        在正态分布的曲线中,横轴区间(μ-σ,μ+σ)内的面积为68.268949%。 

        横轴区间(μ-2σ,μ+2σ)内的面积为95.449974%。 

        横轴区间(μ-3σ,μ+3σ)内的面积为99.730020%。 

        X落在(μ-3σ,μ+3σ)以外的概率小于千分之三,在实际问题中常认为相应的事件是不会发生的,基本上可以把区间(μ-3σ,μ+3σ)看作是随机变量X实际可能的取值区间,这称之为正态分布的“3σ”原则。 

        在tf.truncated_normal中如果x的取值在区间(μ-2σ,μ+2σ)之外则重新进行选择。这样保证了生成的值都在均值附近。

参数:

shape: 一维的张量,也是输出的张量。

mean: 正态分布的均值。

stddev: 正态分布的标准差。

dtype: 输出的类型。

seed: 一个整数,当设置之后,每次生成的随机数都一样。

name: 操作的名字。



作者:sdly_zp
链接:https://www.jianshu.com/p/e18fdc7b633a
来源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

©️2020 CSDN 皮肤主题: 创作都市 设计师:CSDN官方博客 返回首页